K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2022

\(L=\left\{1;3;5;7;9;11;...\right\}\)

7 tháng 9 2022

nêu 4 số tự nhiên thuộc  L và 2 số  tự nhiên ko thuộc

10 tháng 9 2021

Câu mở đầu bị sao ý

10 tháng 9 2021

trả lời giằm đi táu tích cho bác, chứ cháu đang ngồi làm bt mai nộp cô nè pác ới

5 tháng 9 2016

\(\frac{2^n}{8^k}=\frac{2^{2k+1}}{2^{3k}}=2^{2k+1-3k}=2^{-k+1}=2^{-k}.2=\frac{1}{2^k}.2=\frac{2}{2^k}=\frac{1}{2^{k-1}}\)

5 tháng 9 2016

Thay n = 2k + 1 vào

ta có: \(\frac{2^{2k+1}}{8^k}=\frac{2^{2k+1}}{\left(2^3\right)^k}=\frac{2^{2k+1}}{2^{3k}}=\frac{2^{2k}.2}{2^{3k}}=\frac{2}{2^k}\)

14 tháng 2 2016

a ) 10n + 72n - 1 chia hết cho 81

+ ) n = 0 => 100 + 72 . 0 - 1 = 0

+ ) Giả sử đúng đến n = k tức là :

( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1

Tức là : 10k + 1 + 72 x k + 71

=> 10 . 10k + 72k + 71

=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)\(\frac{648k+27}{chiahetcho81}\)

=> đpcm

Câu b và c làm tương tự

13 tháng 2 2016

Đặt B= 10n+72n-1

B = 10ⁿ + 72n - 1

  = 10ⁿ - 1 + 72n

Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)  

   = 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n

=> A : 9 = 11..1 + 8n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9

= 11...1 -n + 9n
=> A : 9 =  chia hết cho 9
=> A chia hết cho 81

20 tháng 2 2016

a) Đặt cái cần chứng minh là (*)

+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng

+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81

Thật vậy:

10k + 1 + 72(k + 1) - 1

= 10k.10 + 72k + 72 - 1

= 10k + 72k + 9.10k + 72 - 1

= (10k + 72k - 1) + 9.10k + 72

đến đây tui ... chịu :))

22 tháng 2 2016

Nhọ Nồi Dù sao thì cx camon's -_-

25 tháng 1 2017

;luyk

3 tháng 7 2015

a2S1 = a2 + a4 + a6 +...+a2n+2

=> a2S1 - S1 = (a2 + a4 + a6 +...+a2n+2)-(1+a2 + a4 + a6 +...+a2n)

S1(a2-1) = a2n+2-1

=> S1 = (a2n+2-1):(a2-1)

 Câu 2 cũng nhân với a2 là được