Tìm x thuộc Q ,biết:32^-x.16^x=2048
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
ta có công thức như sau :
\(a^{-x}=?\)
lời giải công thức này như sau :
\(a^{-x}=\left(\frac{1}{a}\right)^x\)
vậy bài cũng gải tương tự
\(32^{-x}.16^x=\left(\frac{1}{32}\right)^x.\left(16^x\right)\)
\(=\left(\frac{16}{32}\right)^x=\left(\frac{1}{2}\right)^x=2^{-x}\)
mà \(2048=2^{11}\)
\(\Rightarrow-x=11\)
\(\Leftrightarrow x=-11\)
vậy \(x=-11\)
\(\Rightarrow\)\(\left(\frac{1}{32}\right)^x\cdot16^x=2048\)
\(\Rightarrow\)\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^{-11}\)
\(\Rightarrow\)\(x=-11\)
32^n / 16^n = 2048
(32/16)^n = 2048
2^n = 2048
2^n = 2^11
n = 11
Vậy n = 11.
\(\frac{32^n}{16^n}=2048\)
\(\Rightarrow\left(\frac{32}{16}\right)^n=2048\)
\(\Rightarrow2^n=2048\)
\(\Rightarrow2^n=2^{11}\)
\(\Rightarrow n=11\)
Vậy n = 11
_Chúc bạn học tốt_
\(A=1+3+3^2+3^3+...+3^{101}\)
\(3A=3+3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A=\left(3^{101}-1\right):2\)
Thu gọn tổng sau:
A=1+3+32+33+...+3100
B= 2100-299-298-297-...-22-2
C= 3100-399+398-397-...+32-3+1
Theo đề ta có : \(32^{-n}.16^n=2048\)
\(\Rightarrow\frac{1}{32^n}.16^n=2048\)
\(\Rightarrow\frac{16^n}{32^n}=2048\)
\(\Rightarrow\left(\frac{16}{32}\right)^n=\left(\frac{1}{2}\right)^n=2048\)
\(\Rightarrow\frac{1}{2^n}=2048\)
\(\Rightarrow2^n=\frac{1}{2048}\)
\(\Rightarrow2^n=\frac{1}{2^{11}}\Rightarrow1=2^n.2^{11}\)
\(\Rightarrow2^n=2^{-11}\Rightarrow n=-11\) ( bởi vì tích của 2 số nghịch đảo bao giờ cũng bằng 1)
qui ước \(x^{-a}=\frac{1}{x^a}\)
ta có
\(32^{-n}.16^n=2048\Rightarrow\frac{1}{32^n}.16^n=2^{10}\Rightarrow\frac{16^n}{32^n}=2^{10}\)
\(\Rightarrow\left(\frac{16}{32}\right)^n=\frac{1}{2^n}=2^{10}\Rightarrow2^{-n}=2^{10}\Rightarrow-n=10\Rightarrow n=-10\)
$32^{-x}.16^x = 2048$
$⇔ 2^{-5x}.2^{4x} = 2048$
$⇔ 2^{-5x + 4x} = 2048$
$⇔ 2^{-x} = 2048 = 2^{11}$
$⇔ x = -11$
\(32^{-x}.16^x=2048\)
\(\left(2^5\right)^{-x}.\left(2^4\right)^x=2048\)
\(2^{-5x}.2^{4x}=2^{11}\)
\(2^{-x}=2^{11}\)
\(-x=11\)
x = - 11