K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

A B C M N H D E

a) Xét tam giác ABH và tam giác ACH có:

AB=AC (giả thiết)

BH=HC (vì H là trung điểm của BC)

AH là cạnh chung

=>\(\Delta ABH=\Delta ACH\left(c.c.c\right)\)

b) Theo chứng minh phần a ta có: \(\Delta ABH=\Delta ACH\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 góc tương ứng)

mà  \(\widehat{AHB}\) và \(\widehat{AHC}\) kề bù => \(\widehat{AHB}+\widehat{AHC}=180^o\)=>  \(\widehat{AHB}=\widehat{AHC}=90^o\)\(\Rightarrow AH⊥BC\)

c) cái này tạm thời chưa nghĩ ra :v

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

b: Xét ΔAIH vuông tại I và ΔAKH vuông tại K có

AH chung

\(\widehat{IAH}=\widehat{KAH}\)

Do đó: ΔAIH=ΔAKH

Suy ra: AI=AK

c: Xét ΔABC có 

AI/AB=AK/AC

nên IK//BC

26 tháng 12 2016

câu a trước

Xét tam giác ABH và tam giác ACH có:

  AH là cạnh chung

  HB=HC ( H là TĐ của BC)

  AB=AC (gt)

do đó :tạm giác ABH = tam giác ACH ( c-c-c)

26 tháng 12 2016

k vẽ hình nhé bn

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

mà B,H,C thẳng hàng(gt)

nên H là trung điểm của BC(Đpcm)

b) Xét ΔAMB và ΔCME có 

\(\widehat{AMB}=\widehat{CME}\)(hai góc đối đỉnh)

MA=MC(M là trung điểm của AC)

\(\widehat{BAM}=\widehat{ECM}\)(hai góc so le trong, AB//CE)

Do đó: ΔAMB=ΔCME(g-c-g)

Xét ΔABC có 

BM là đường trung tuyến ứng với cạnh AC(M là trung điểm của AC)

AH là đường trung tuyến ứng với cạnh BC(H là trung điểm của BC)

BM cắt AH tại I(gt)

Do đó: I là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

a: Xet ΔABH và ΔACH có

AB=AC

BH=CH

AH chung

=>ΔABH=ΔACH

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

DO đó: ΔABH=ΔACH

b: Xét ΔEDH vuông tại D và ΔEDC vuông tại D có 

ED chung

HD=CD

Do đó: ΔEDH=ΔEDC

11 tháng 5 2022

có câu c ko bạn 

 

5 tháng 9 2016

A B C M E D

1. Vì ME // AC nên góc BME = góc BCA ; 

        DM // AB => góc DMC = góc ABC ; BM = MC

=> Tam giác EBM = tam giác DMC (g.c.g)

2. Vì tam giác EBM = tam giác DMC nên MD = BE

Mà DAEM là hình bình hành vì có các cạnh đối song song với nhau

=> DM = AE => BE = AE => E là trung điểm của AB

Tương tự ta cũng có D là trung điểm của AC