cho 2 điểm A và B nằm trên đường trung trực của đoạn thẳng MN. Biết rầngMB=90 độ. Hãy chứng minh AN vuông góc NB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì M, N nằm trên đường trung trực của AB nên MA = MB ; NA = NB ( tính chất)
Mà MA = NA (gt)
Do đó, MA = NA = MB = NB.
Xét tam giác AMB và tam giác ANB có:
MA = NA (gt)
MB = NB (cmt)
AB chung
Do đó, ∆AMB = ∆ANB (c – c – c).
\(\Rightarrow \widehat{AMB}=\widehat{ANB}\) (2 góc tương ứng).
Vậy MB = NB và góc AMB bằng góc ANB.
Vì Ad//Oy
=> xOA = dAy = 90° (Vì 2 góc này ở vị trí đồng vị )
=> Ad vuông góc với Oy
Hay đường thẳng d vuông góc với Oy
Vì OA = AB
=> Đường thẳng d là trung trực OB
\(O\in Ox\)\(\Rightarrow OM=OA\)\(\left(1\right)\)(Ox là đường trung trực của MA)
\(O\in Oy\)\(\Rightarrow OA=OM\)\(\left(2\right)\)(Oy là dường trung trực AN)
Từ \(\left(1\right);\left(2\right)\Rightarrow OM=ON\)
Vì\(OM=ON\)\(\Rightarrow O\in\)đường trung trực của MN (O cách đều hai mút M và N)
Vậy đường trung trực của MN luôn đi qua 1 điểm là O.
b là sao bạn mk ko hiểu?
a) Xét ΔBNP có
BA là đường trung trực ứng với cạnh PN(gt)
nên ΔBNP cân tại B(Định lí tam giác cân)
b) Xét ΔMBN vuông tại M và ΔCBP vuông tại C có
BN=BP(cmt)
\(\widehat{MBN}=\widehat{CBP}\)(hai góc đối đỉnh)
Do đó: ΔMBN=ΔCBP(cạnh huyền-góc nhọn)
a) Ta có MN vuông góc với AB ( do MN là đường trung trực của đoạn thẳng AB theo giả thuyết nên suy ra)
và đường thẳng m cũng vuông góc với đoạn thẳng AB ( theo giả thiết)
nên từ đó ta suy ra MN//m (đpcm)
b) Từ MN//m ta suy ra MIC=ICB (hai góc so le trong)
mà ICB= 60 độ => MIC=60 độ
c) Ta có HIB= HIN+NIB
Mặt khác HIN=MIC=60 độ ( so le trong)
và NIB=90 độ (gt)
suy ra HIB= 60+90=150 độ
d) Vì theo giả thiết ta có đường thẳng a đi qua C và song song với MN và điểm C lại nằm trên cùng một đường thẳng m với điểm B mà đường thẳng m lại song song với đường thẳng MN nên suy ra đường thẳng a trùng với đường thẳng m và đi qua B
a: Ta có: M nằm trên đường trung trực của AB
nên MA=MB
b: Ta có: ΔMAB cân tại M
mà MI là đường trung trực
nên MI là đường phân giác
Gọi M là trung điểm BC => BM=CM
Xét tam giác ABC có:
BM=CM
AE=EC (giả thiết vì E la trung điểm của AC)
Nên: EM là đường trung bình trong tam giác ABC
=>EM//AB và EM=AB/2
Tương tự: Xét tam giác BCD có:
FM là đường trung bình trong tam giác BCD
=>FM//CD và FM=CD/2
Lại có:
FM//CD
mà AB//CD (theo giả thiết ABCD la hthang)
Nên: FM//AB
Mà EM//AB
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng.
Vậy,EF=FM-EM=(CD-AB)/2