Cho tam giác ABC nhọn (AB < AC), M là trung điểm của BC. Trên tia AM lấy điểm D sao cho MD = MA.
a) Chứng minh: tam giác AMB = tam giác DMC.
b) Chứng minh: AB // CD.
c) Trên AB lấy điểm E, trên CD lấy điểm F sao cho AE = DF. Chứng minh: E, M, F thẳng hàng.
a/ Xét tam giác AMB và tam giác DMC có:
MA= MD( GT)
AMB=CMD( 2 góc đối đỉnh)
MB= MC( M là trung điểm của BC)
=> tam giác AMB= tam giác DMC(c.g.c)
b/ => góc BAM=MDC( theo a)
=> AB// CD( 2 góc ở vị trí sole trong bằng nhau)
c/ Xét tam giác AEM và tam giác AFM có:
AE= EF(GT)
góc EAM= FDM( theo b)
AM= DM( GT)
=> tam giác AEM = tam giác AFM(c.g.c)
Do đó: góc AME= góc DMF
=>góc AME+ AMF= DMF+ AMF
=>EMF= 180 độ
Vậy => E, M, F thẳng hàng.
Xin lỗi ! Bạn có thể tự vẽ hình dc ko?