Tất cả số nguyên tố <19999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2
Nếu p = 2
=> 7p + q = 7.2 + q = 14 + q
q sẽ có 3 dạng là : 3k ; 3k+1;3k+2
Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố
q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố
q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố
Vậy q = 3 ; p = 2
VÀ TH q = 2 bn tự xét nha
chon dai di thoi
a1=1
a2=3
=>d3=2
d1=a1-a3 de sai roi a1<a3 khong co d1
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Cái này phải có 1 Điều kiện gì đó chứ bạn . Nếu không là 1 đống đấy
VD : a = 1 ; b = 1 ; c = 1
=> 1.1.1 < 1.1 + 1.1 + 1.1
<=> 1 < 3 ( Chọn )
a = 1 ; b = 2 ; c = 3
=> 1.2.3 < 2.3 + 1.2 + 1.3
<=> 6 < 11 (chọn )
Giả sử \(2\le c\le b\le a\) (1)
Từ abc < ab + bc + ca chia 2 vế cho abc ta được :
\(1< \frac{1}{c}+\frac{1}{b}+\frac{1}{a}\) (2)
Từ (1) ta có :
\(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\le\frac{3}{c}\) nên \(1< \frac{3}{c}\Rightarrow c< 3\Rightarrow c=2\)
Thay c = 2 vào (2) ta có :
\(\frac{1}{2}< \frac{1}{a}+\frac{1}{b}\le\frac{2}{b}\Rightarrow b\le4\)
Vì b là số nguyên tố nên \(\orbr{\begin{cases}b=2\\b=3\end{cases}}\)
Với \(b=2\Rightarrow\frac{1}{2}< \frac{1}{a}+\frac{1}{2}\Rightarrow\frac{1}{a}>0\) đúng với mọi số nguyên tố a
Với \(b=3\Rightarrow\frac{1}{2}< \frac{1}{a}+\frac{1}{3}\Rightarrow\frac{1}{a}>\frac{1}{6}\Rightarrow a< 6\)
Mà a là số nguyên tố nên \(\orbr{\begin{cases}a=3\\a=5\end{cases}}\)
Vậy ( a ; b ; c ) = ( 5 ; 3 ; 2 ) ; ( 3 ; 3 ; 2 ) ; ( a ; 2 ; 2 ) với a là số nguyên tố bất kì
KHông mất tính tổng quát: g/s: \(a\ge b\ge c\)
=> \(ab+bc+ac\le ab+ba+ab=3ab\)
Theo đề bài: \(abc< ab+bc+ac\)
=> \(abc< 3ab\Leftrightarrow c< 3\)
mà c là số nguyên tố => c = 2
=> \(2ab< ab+2b+2a\)
=> \(ab< 2\left(a+b\right)\)mặt khác \(a\ge b\)
=> \(ab< 2\left(a+a\right)\Leftrightarrow ab< 4a\Leftrightarrow b< 4\)
Ta có b là số nguyên tố => b = 2 hoặc b = 3
Với b = 2 => \(4a< 2a+4+2a\)=> 0 < 4 luôn đúng với mọi a
Với b = 3 => \(6a< 3a+6+2a\)=> a < 6 . Vì a là số nguyên tố lớn hơn hoặc bằng b => a = 3 hoặc a = 5
Vậy có các bộ số : ( a; 2; 2) với a nguyên tố bất kì; ( 3; 3; 2) ; ( 5; 3; 2) Và các hoán vị
Cách 1 : a4 + b4≥ a3.b + a.b3
Khi và chỉ khi a4 + b4 - a3.b - a.b3 ≥ 0
Khi và chỉ khi a3 (a - b) - b3 (a - b) ≥ 0
Khi và chỉ khi (a - b)(a3 - b3) ≥ 0 khi và chỉ khi (a - b)(a - b)(a2 + ab + b2) ≥ 0
Khi và chỉ khi (a - b)2[(a + b/2)2 + 3.b3/4] ≥ 0 (hiển nhiên đúng với mọi a,b)
Cách 2 : Ta có[ a2 - b2]2 ≥ 0
=> a4 - 2.a2.b2 + b4 ≥ 0
=> a4 + b4 ≥ 2.a2.b2
=> a4 + b4 + a4 + b4 ≥ a4 + b4 + 2.a2.b2
=> 2( a4 + b4) &ge ; ( a2 + b2)2 (1)
Mặt khác (a - b)2≥ 0
=> a2 - 2ab + b2 ≥ 0
=> a2 + b2≥2ab
=> (a2 + b2)( a2 + b2)≥2ab (a2 + b2)
=> (a2 + b2)2 ≥2ab (a2 + b2) (2)
Từ (1) và (2) => 2( a4 + b4 ) ≥ 2ab (a2 + b2)
=> ( a4 + b4 )≥ a3.b + a.b3
Cách 3 :
( a4 + b4 ) -( a3.b + a.b3) = 1/2 (2 a4 + 2 b4 - 2 a3.b -2 a.b3)
= 1/2 [(a4 - 2 a3.b +