giai hệ phương trình:
6(x+y)=5xy
12(y+z)=7yz
4(z+x)=3xz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ \(\Leftrightarrow\frac{x+y}{xy}=\frac{5}{6};\frac{y+z}{yz}=\frac{7}{12};\frac{x+z}{xz}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\left(1\right);\frac{1}{y}+\frac{1}{z}=\frac{7}{12}\left(2\right);\frac{1}{x}+\frac{1}{z}=\frac{3}{4}\left(3\right)\)
Cộng (1), (2),(3) vtv:\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=\frac{13}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{13}{12}\left(4\right)\)
Lấy (4) trừ (1),(2),(3) :\(\frac{1}{z}=\frac{1}{4};\frac{1}{x}=\frac{1}{2};\frac{1}{y}=\frac{1}{3}\)
Vậy: \(x=2;y=3;z=4\)
Ta có x + y + z = 0
<=> (x + y + z)2 = 0
<=> \(x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\Leftrightarrow xy+yz+zx=-3\) (vì x2 + y2 + z2 = 6)
\(\Leftrightarrow x\left(y+z\right)+yz=-3\)
\(\Leftrightarrow-x^2+yz=-3\Leftrightarrow yz=x^2-3\) (vì x + y + z = 0)
Khi đó \(x^3+y^3+z^3=x^3+(y+z).(y^2+z^2-yz)\)
\(=x^3-x.[6-x^2-(x^2-3)]\)
\(=x^3-x.(9-2x^2)=3x^3-9x=6\)
Ta được \(\Leftrightarrow x^3-3x-2=0\Leftrightarrow(x^3+1)-3(x+1)=0\)
\(\Leftrightarrow(x+1)(x^2-x-2)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Với x = -1 ta có hệ \(\left\{{}\begin{matrix}y+z=1\\y^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\(1-z)^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\z^2-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\\left[{}\begin{matrix}z=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\z=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)
Với x = 2 ta có hệ : \(\left\{{}\begin{matrix}y+z=-2\\y^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\(-2-z)^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z^2+2z+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z=-1\end{matrix}\right.\Leftrightarrow y=z=-1\)
Vậy (x;y;z) = (2;-1;-1) ; (-1 ; 2 ; -1) ; (-1 ; -1 ; 2)
Ta có
\(\sqrt{4x-1}\le\frac{1+4x-1}{2}=2x\)
\(\sqrt{4y-1}\le2y\)
\(\sqrt{4z-1}\le2z\)
Cộng vế theo vế ta được
\(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\le2\left(x+y+z\right)\)
Theo đề bài ta có khi cộng pt (1), (2), (3) vế theo vế thì được
\(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}=2\left(x+y+z\right)\)
Dấu = xảy ra khi x = y = z = \(\frac{1}{2}\)