\(\frac{6^{15}\cdot9^{10}}{3^{34}\cdot2^{13}}\)= ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)
\(=\frac{15}{6}-\frac{1}{6}.9+\frac{3}{8}\)
\(=\frac{15}{6}-\frac{9}{6}+\frac{3}{8}\)
\(=1+\frac{3}{8}\)
\(=\frac{11}{8}\)
b) \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=2^2.3=12\)
a/ \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)
= \(\frac{15}{6}-\frac{3}{18}.9+\frac{8}{8}\)
= \(\frac{15}{6}-\frac{3}{2}+\frac{3}{8}\)
= \(\frac{60-36+9}{24}=\frac{33}{24}=\frac{11}{8}\)
b/ \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}\) \(=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=\frac{2^2.3^{35}}{3^{34}}=\frac{4.3}{1}=12\)
\(\frac{16^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2^4\right)^{15}.\left(3^2\right)^{10}}{3^{24}.2^{13}}=\frac{2^{60}.3^{20}}{3^{24}.2^{13}}=\frac{2^{47}}{3^4}\)
\(A=\frac{15.3^{11}+4.27^1}{9^7}\)
\(\Rightarrow A=\frac{3.5.3^{11}+4.3^{3^1}}{\left(3^2\right)^7}\)
\(\Rightarrow A=\frac{3^{12}.5+4.3^3}{3^{14}}\)
\(\Rightarrow A=\frac{3^3.\left(5.3^8+4.3^3\right)}{3^{14}}\)
\(\Rightarrow A=\frac{32805+4}{177147}\)
\(\Rightarrow A=\frac{32809}{177147}\)
bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó
\(I=\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.2^{30}.3^{27}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{5.2^{30}.3^{27}-3^{30}.2^{29}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{27}.\left(5.2-3^3\right)}{2^{28}.3^{18}.\left(5.3-2.7\right)}\)
\(=\frac{2^{29}.3^{27}.-17}{2^{18}.3^{18}}\)
\(=\frac{2^9.3^9.-17}{1}\)
Ta có \(H=\frac{\left(3.4.2^{16}\right)}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3.4.2^{16}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3.2^{18}}{11.2^{35}-2^{36}}\)
\(=\frac{3.2^{18}}{2^{35}.\left(11-2\right)}\)
\(=\frac{3.2^{18}}{2^{35}.3^2}\)
\(=\frac{1}{2^{17}.3}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{18}.3^8\left(2.3+15\right)}{2^{19}.3^9\left(1+2.3\right)}\)
\(=\frac{6+15}{2.3\left(1+6\right)}\)
\(=\frac{21}{6.7}\)
\(=\frac{21}{42}\)
\(=\frac{1}{2}\)
Có P =\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\dfrac{2^{19}.\left(3^3\right)^3+5.3.\left(3^2\right)^4}{\left(2.3\right)^9+\left(3.2^2\right)^{10}}\)=\(\dfrac{2^{19}.3^9+5.3.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.\left(2^2\right)^{10}}=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.2^{20}}=\dfrac{2^{18}.3^9.\left(2+5\right)}{3^9.2^{19}.\left(1+3.2\right)}=\dfrac{2^{18}.3^9.7}{3^9.2^{19}.7}\)
=\(\dfrac{1}{2}\)
6^15*9^10/3^34*2^13
=2^15*3^15*3^20/3^34*2^13
Rút gọn phân số trên, ta được
2^2*3/1=12
Vậy phép tính trên bằng 12
Phân số trên bằng 12