Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6^15*9^10/3^34*2^13
=2^15*3^15*3^20/3^34*2^13
Rút gọn phân số trên, ta được
2^2*3/1=12
Vậy phép tính trên bằng 12
a) \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)
\(=\frac{15}{6}-\frac{1}{6}.9+\frac{3}{8}\)
\(=\frac{15}{6}-\frac{9}{6}+\frac{3}{8}\)
\(=1+\frac{3}{8}\)
\(=\frac{11}{8}\)
b) \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=2^2.3=12\)
a/ \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)
= \(\frac{15}{6}-\frac{3}{18}.9+\frac{8}{8}\)
= \(\frac{15}{6}-\frac{3}{2}+\frac{3}{8}\)
= \(\frac{60-36+9}{24}=\frac{33}{24}=\frac{11}{8}\)
b/ \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}\) \(=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=\frac{2^2.3^{35}}{3^{34}}=\frac{4.3}{1}=12\)
bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó
\(A=\frac{6^{10}-3^9.2^8.5}{27^3.4^5+16^3.9^4}\)
\(=\frac{3^{10}.2^{10}-3^9.2^8.5}{\left(3^3\right)^3.\left(2^2\right)^5+\left(2^4\right)^3.\left(3^2\right)^4}\)
\(=\frac{3^{10}.2^{10}-3^9.2^8.5}{3^9.2^{10}+2^{12}.3^8}\)
\(=\frac{3^9.2^8.\left(3.2^2-1.1.5\right)}{3^8.2^{10}.\left(3.1+2^2\right)}\)
\(=\frac{3^9.2^8.7}{3^8.2^{10}.7}\)
\(=\frac{3}{2^2}=\frac{3}{4}\)
Bài làm :
\(A=\frac{6^{10}-3^9.2^8.5}{27^3.4^5+16^3.9^4}\)
\(=\frac{\left(2.3\right)^{10}-3^9.2^8.5}{\left(3^3\right)^3.\left(2^2\right)^5+\left(2^4\right)^3.\left(3^2\right)^4}\)
\(=\frac{2^{10}.3^{10}-3^9.2^8.5}{3^9.2^{10}+2^{12}.3^8}\)
\(=\frac{2^8.3^9.\left(2^2.3-5\right)}{3^8.2^{10}.\left(3+2^2\right)}\)
\(=\frac{3.7}{2^2.7}\)
\(=\frac{3}{4}\)
Học tốt
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{18}.3^8\left(2.3+15\right)}{2^{19}.3^9\left(1+2.3\right)}\)
\(=\frac{6+15}{2.3\left(1+6\right)}\)
\(=\frac{21}{6.7}\)
\(=\frac{21}{42}\)
\(=\frac{1}{2}\)
Có P =\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\dfrac{2^{19}.\left(3^3\right)^3+5.3.\left(3^2\right)^4}{\left(2.3\right)^9+\left(3.2^2\right)^{10}}\)=\(\dfrac{2^{19}.3^9+5.3.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.\left(2^2\right)^{10}}=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.2^{20}}=\dfrac{2^{18}.3^9.\left(2+5\right)}{3^9.2^{19}.\left(1+3.2\right)}=\dfrac{2^{18}.3^9.7}{3^9.2^{19}.7}\)
=\(\dfrac{1}{2}\)
\(\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}\)
\(=\frac{3^{17}\cdot\left(3^4\right)^{11}}{\left(3^3\right)^{10}\cdot\left(3^2\right)^{15}}\)
\(=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}\)
\(=\frac{3^{61}}{3^{60}}\)
\(=3\)
\(\frac{9^2\cdot2^{11}}{16^2\cdot6^3}\)
\(=\frac{\left(3^2\right)^2\cdot2^{11}}{\left(2^4\right)^2\cdot\left(2\cdot3\right)^3}\)
\(=\frac{3^4\cdot2^{11}}{2^8\cdot2^3\cdot3^3}\)
\(=\frac{3^4\cdot2^{11}}{2^{11}\cdot3^3}\)
\(=\frac{3^4}{3^3}\)
\(=3\)
\(=\frac{2^{19}3^9+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+4^{10}\cdot3^{10}}=\frac{2^{19}\cdot3^9+5\cdot2^{18}\cdot3^9}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\frac{2^{18}\cdot3^9\cdot\left(2+5\right)}{2^{19}\cdot3^9\left(1+6\right)}=\frac{1}{2}\)
\(\frac{16^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2^4\right)^{15}.\left(3^2\right)^{10}}{3^{24}.2^{13}}=\frac{2^{60}.3^{20}}{3^{24}.2^{13}}=\frac{2^{47}}{3^4}\)