Bài 4:Tính nhanh
(1-1/2)x(1-1/3)x........x(1-1/2021)x(1-1/2022)
Giải trong 20p được tick nhé=))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=2021\cdot2\cdot\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)=4042\cdot\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)=0\)
Bài 1 : a)Tổng của các số nguyên x thỏa mãn là 0 vì - 2011 là số đối của 2011 nên tổng của chúng = 0
Sory bạn nhé , câu còn lại hơi khó nên mik không giải được !
Chúc bạn học tốt !
\(\dfrac{2022\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{\left(2021+1\right)\times2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2023-1}{2023\times2021+2022}\)
= \(\dfrac{2023\times2021+2022}{2023\times2021+2022}\)
= 1
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)
Số nào xuất hiện 2 lần thì thay thế những số đó bằng số 1.
\(B=\frac{1}{2020}\)
B = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right).\left(1-\frac{1}{2020}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2018}{2019}.\frac{2019}{2020}\)
= \(\frac{1.2.3...2019}{2.3.4..2020}\)(Nếu có 2 thừa số giống nhau lặp lại ở tử số và mẫu số thì rút gọn coi như triệt tiêu hết và không có gì)
= \(\frac{1}{2020}\)
\(\dfrac{x-1}{2023}+\dfrac{x-2}{2022}=\dfrac{x-3}{2021}+\dfrac{x-4}{2020}\)
`<=>(x-1)/2023-1+(x-2)/2022-1=(x-3)/2021-1+(x-4)/2020-1`
`<=>(x-2024)/2023+(x-2024)/2022=(x-2024)/2021+(x-2024)/2020`
`<=>(x-2024)(1/2023+1/2022-1/2021-1/2020)=0`
`<=>x-2024=0(1/2023+1/2022-1/2021-1/2020>0)`
`<=>x=2024`
=>\(\left(\dfrac{x-1}{2023}-1\right)+\left(\dfrac{x-2}{2022}-1\right)=\left(\dfrac{x-3}{2021}-1\right)+\left(\dfrac{x-4}{2020}-1\right)\)
=>x-2024=0
=>x=2024
a) \(\left(x-1\right)^3\)
\(=x^3-3x^2+3x-1\)
b) \(\left(2x-3y\right)^3\)
\(=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^3+\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
Bài 3:
a: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=5\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=5\)
\(\Leftrightarrow12x=13\)
hay \(x=\dfrac{13}{12}\)
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=4\)
\(\Leftrightarrow x^3-1-x^3+4x=4\)
\(\Leftrightarrow4x=5\)
hay \(x=\dfrac{5}{4}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)
\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).
-Đến đây thôi bạn, câu hỏi sai rồi ạ.
= (1-1/2) x (1-1/3) x (1-1/4) x ... x (1-1/2021) x (1-1/2022)
= 1/2 x 2/3 x 3/4 x ... x 2020/2021 x 2021/2022
= \(\dfrac{1x2x3x...x2020x2021}{2x3x4x...x2021x2022}\)
2 với 2 là hết,3 với 3 là hết,4 với 4 là hết,...,2021 với 2021 là hết
= \(\dfrac{1}{2022}\)
`= 1/2 . 2/3 . 3/4 . ... . 2021/2022`
`= 1/2022`