K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2022

alo trả lời đi mình tặng coin

 

14 tháng 8 2022

Ta có : (x×2+x)×2-14(x×2+x)+24

= 3x×2-14×3x+24

= 6x-42x+24

= 24-36x

= 6(4-6x)

17 tháng 8 2018

\(\left(x^2+x\right)^2-2x^2-2x-15\)

\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)

\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)

\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)

đặt \(x^2+x=t\)

\(\left(1\right)\)\(=\)  \(t^2-2t-15\)

            \(=\left(t-1\right)^2-16\)

            \(=\left(t-1-4\right)\left(t-1+4\right)\)

           \(=\left(t-5\right)\left(t+3\right)\)

thay \(t=x^2+x\) ta có

\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

các câu còn lại tương tự nha

học tốt 

3 tháng 9 2018

Gợi ý:

a)  Đặt    \(t=x^2+x+1\)

b)  Đặt    \(t=x^2+8x+11\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt:   \(t=x^2+7x+11\)

\(\dfrac{xy}{2}-x+\dfrac{x^2}{4}=x\left(\dfrac{y}{2}-1+\dfrac{x}{4}\right)\)

25 tháng 9 2021

a) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-4=\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\)

Đặt \(t=x^2+6x+5\)

\(PT=t\left(t+3\right)-4=t^2+3t-4=\left(t-1\right)\left(t+4\right)\)

Thay t: \(PT=\left(x^2+6x+5-1\right)\left(x^2+6x+5+4\right)=\left(x^2+6x+4\right)\left(x^2+6x+9\right)=\left(x^2+6x+4\right)\left(x+3\right)^2\)

b)  Đặt \(t=\left(2x+1\right)^2\)

\(PT=t^2-3t+2=\left(t^2-3t+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(t+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(t+1\right)\left(t+2\right)\)

Thay t:

\(PT=\left[\left(2x+1\right)^2+1\right]\left[\left(2x+1\right)^2+2\right]=\left[4x^2+4x+2\right]\left[4x^2+4x+3\right]=2\left[2x^2+2x+1\right]\left[4x^2+4x+3\right]\)

5 tháng 7 2019

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

5 tháng 7 2019

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

2 tháng 10 2018

      \(\left(x^2+5x\right)^2+10x^2+50x+24\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24\)

\(=\left(x^2+5x\right)^2+4\left(x^2+5x\right)+6\left(x^2+5x\right)+24\)

\(=\left(x^2+5x\right)\left(x^2+5x+4\right)+6\left(x^2+5x+4\right)\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

\(=\left[x^2+x+4x+4\right]\left[x^2+2x+3x+6\right]\)

\(=\left[x\left(x+1\right)+4\left(x+1\right)\right]\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

Chúc bạn học tốt.

2 tháng 10 2018

(x2 + 5x)2 + 10x2 + 50x + 24

= ( x2 + 5x)2 + 10 ( x2 + 5x) + 24  (1)

Đặt t = x2 + 5x

(1) <=> t2 + 10t + 24

= t2 + 2. t . 5 + 25 -1

= ( t + 5 )2 -1

= ( t + 5 -1 ) ( t + 5 + 1)

= ( t + 4 ) ( t + 6)

thay t = x2 + 5x vào bt trên, ta có

( x2 + 5x + 4) ( x2 + 5x + 6 )

= ( x2 + x + 4x + 4 ) ( x2 + 2x + 3x + 6)

= ( x + 1 ) ( x + 4 ) ( x + 2 ) ( x + 3)

28 tháng 8 2018

a)   \(x^4+4=x^4+4x^2+4-4\)

\(=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

b)  \(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt     \(x^2+5x+5=t\)

Khi đó ta có:    \(B=\left(t-1\right)\left(t+1\right)-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

Thay trở lại ta được:

\(B=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)