Đưa biểu thức sau về dạng tổng hoặc hiệu hai bình phương
a) x2 +10x+ 26+ y2 +2y
b) a2 - 6x+5 -b2 -4a
c) x2 -2x.y +2y2 + 2y +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) x2 + 10x + 26 + y2 + 2y
= (x2 + 10x + 25) + (y2 + 2y + 1)
= (x + 5)2 + (y + 1)2
b) z2 - 6z + 5 - t2 - 4t
= (z - 3)2 - (t + 2)2
c) x2 - 2xy + 2y2 + 2y + 1
= (x2 - 2xy + y2) + (y2 + 2y + 1)
= (x - y)2 + (y + 1)2
d) 4x2 - 12x - y2 + 2y + 1
= (4x2 - 12x ) - (y2 + 2y + 1)
= ......................................
ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675
Lời giải:
a. $x^2+y^2+4y+13-6x$
$=(x^2-6x+9)+(y^2+4y+4)$
$=(x-3)^2+(y+2)^2$
b.
$4x^2-4xy+1+2y^2-2y$
$=(4x^2-4xy+y^2)+(y^2-2y+1)$
$=(2x-y)^2+(y-1)^2$
c.
$x^2-2xy+2y^2+2y+1$
$=(x^2-2xy+y^2)+(y^2+2y+1)$
$=(x-y)^2+(y+1)^2$
a. \(x^2+y^2+4y+12-6x=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)=\left(x-3\right)^2+\left(y+2\right)^2\)b. \(4x^2-4xy+1+2y^2-2y=\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)=\left(2x-y\right)^2+\left(y-1\right)^2\)c. \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{a\left(x-y\right)+b\left(x-y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{\left(x-y\right)\left(a+b\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{a+b}\)
\(=\dfrac{a+b-c}{\left(a+b\right)^2-c^2}.\dfrac{\left(a+b\right)^2+c\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{a+b-c}{\left(a+b-c\right)\left(a+b+c\right)}.\dfrac{\left(a+b\right)\left(a+b+c\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{1}{a-b}\)
\(c,\dfrac{x^3+1}{x^2+2x+1}.\dfrac{x^2-1}{2x^2-2x+2}\)
\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2-x+1\right)}\) \(=\dfrac{x-1}{2}\) \(d,\dfrac{x^8-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4\right)^2-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x+1}.\dfrac{1}{x^2+1}\) \(=\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\) \(=x-1\) \(e,\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}.\dfrac{y-x}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x\left(x-y\right)}.\dfrac{-\left(x-y\right)}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x}.\dfrac{-1}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{-3x-y}{x\left(x+y\right)}\) \(=\dfrac{x\left(x-y\right)+y\left(3x+y\right)}{xy\left(x+y\right)}\) \(=\dfrac{x^2-xy+3xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{x^2+2xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}=\dfrac{x+y}{xy}\)tìm giá trị của m để pt 2x-m=1-x nhận giá trị x=-2 là nghiệm
giải hộ e với :)
a) x2+10x+26+y2+2y
=x2+10x+25+y2+2y+1
=(x+5)2+(y+1)2
b) z2-6z+5-t2-4t
=z2-6z+9-t2-4t-4
=(z-3)2-(t2+4t+4)
=(z-3)2-(t+2)2
c)x2-2xy+2y2+2y+1
=x2-2xy+y2+y2+2y+1
=(x-y)2+(y+1)2
d) 4x2-12x-y2+2y+8
=4x2-12x+9-y2+2y-1
=(2x-3)2-(y2-2y+1)
=(2x-3)2-(y-1)2
Bài 1:
a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)
..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)
............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)
c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)
..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)
d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)
Bài 2:
a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)
b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)
c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)
d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)
a) ( x + 1 ) 2 . b) ( x – 4 ) 2 .
c) x 2 4 + x + 1 ; d) ( 2 x – 2 y ) 2 .
a)x2-6x+9
=x2-2.x.3+32
=(x-3)2
b)4x2+4x+1
=(2x)2+2.2x.1+12
=(2x+1)2
c)4x2+12xy+9y2
=(2x)2+2.2x.3y+(3y)2
=(2x+3y)2
d)4x4-4x2+4
=(2x2)2-2.2x2.2+22
=(2x2-2)2
\(x^2-2xy+5y^2+4y+1\)
\(=x^2-2xy+y^2+4y^2+4y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2\)
\(x^2-2xy+5y^2+4y+1=x^2-2xy+y^2+4y^2+4y+1=\left(x-y\right)^2+\left(2y+1\right)^2\)
\(a.\)
\(z^2-6z+5-t^2-4t\)
\(=z^2-6z+9-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(b.\)
\(4x^2-12x-y^2+2y+1\)
Câu này đề sai sao ấy em !
b, mik nghĩ đề sửa thành: \(4x^2-12x-y^2+2y+8\)
\(=4x^2-12x+9-y^2+2y-1\)
\(=\left(2x\right)^2-2.2.3.x+3^2-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
a) \(x^2+10x+26+y^2+2y\)
\(=x^2+10x+25+y^2+2y+1\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b) Xem lại đề
c) \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2xy+y^2+y^2+2y+1\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)