cho\(\frac{x^n-x^{-n}}{x^n+x^{-n}}\)= m với mọi n thuộc N*
tính P=\(\frac{x^{2n}-x^{-2n}}{x^{2n}+x^{-2n}}\)theo m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ trang 1 dến 9 có 9 chữ số
từ trang 10 đến 99 có số chữ số là
( 99 - 10 ) : 1 + 1 = 90 số
để viết 90 số có 2 chữ số cần số chữ số là
90 . 2= 180 chữ số
từ 100 đến 999 có số số là
( 999 - 100 ) : 1 + 1 = 900 số
để viết 900 số có 3 chữ số cần số chữ số là
900 . 3 = 2700 chữ số
từ 1000 đến 1032 có số số là
( 1032 - 1000 ) : 1 + 1 = 33 số
để viết 33 số có 4 chữ số ta cần số chữ số là
33 . 4 = 132 chữ số
cần tất cả số chữ số để viết từ 1 đến 1032 là
9 + 180 + 2700 + 132 = 3021 chữ số
\(y=\frac{x^n+\frac{1}{x^n}}{x^n-\frac{1}{x^n}}=\frac{x^{2n}+1}{x^{2n}-1}\)
Xét \(y^2+1=\left(\frac{x^{2n}+1}{x^{2n}-1}\right)^2+1=\frac{x^{4n}+2x^{2n}+1}{x^{4n}-2x^{2n}+1}+1=\frac{2\left(x^{4n}+2\right)}{x^{4n}-2x^{2n}+1}\)
\(\Rightarrow\frac{y^2+1}{2y}=\frac{2\left(x^{4n}+1\right)}{x^{4n}-2x^{2n}+1}.\frac{x^{2n}-1}{2\left(x^{2n}+1\right)}=\frac{x^{4n}+1}{\left(x^{2n}-1\right)^2}.\frac{x^{2n}-1}{x^{2n}+1}=\frac{x^{4n}+1}{x^{4n}-1}=\frac{\frac{x^{4n}+1}{x^{2n}}}{\frac{x^{4n}-1}{x^{2n}}}=\frac{x^{2n}+\frac{1}{x^{2n}}}{x^{2n}-\frac{1}{x^{2n}}}\)
( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0
vậy ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\ge\) 0
mà ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\le\)0
suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0
do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)
Câu hỏi của Công Chúa Của Những Vì Sao - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé! Hai bài làm tương tự nhau:)
ta có
1+m = \(\frac{2x^n}{x^n+\frac{1}{x^n}}\), 1-m = \(\frac{2}{x^n\left(x^n+\frac{1}{x^x}\right)}\)
=> \(\frac{1+m}{1-m}\)= x2n
do đó P = \(\frac{\frac{1+m}{1-m}-\frac{1-m}{1+m}}{\frac{1+m}{1-m}+\frac{1-m}{1+m}}\)= \(\frac{\left(1+m\right)^2-\left(1-m\right)^2}{\left(1-m\right)\left(1+m\right)}\). \(\frac{\left(1-m\right)\left(1+m\right)}{\left(1+m\right)^2+\left(1-m\right)^2}\)
= \(\frac{2m}{1+m^2}\)
Đặt x 2n = a ta có
\(\frac{x^n-x^{-n}}{x^n+x^{-n}}=\frac{x^{2n}-1}{x^{2n}+1}=\frac{a-1}{a+1}=m\)
\(\Leftrightarrow a-1=m\left(a+1\right)\)
\(\Leftrightarrow a\left(1-m\right)=1+m\)
\(\Leftrightarrow a=\frac{1+m}{1-m}\)
Ta lại có
\(\frac{x^{2n}-x^{-2n}}{x^{2n}+x^{-2n}}=\frac{x^{4n}-1}{1+x^{4n}}=\frac{a^2-1}{1+a^2}\)
Tới đây thì e chỉ cần thế vô rồi rút gọn là ra nhé