\(y=\frac{x^n+\frac{1}{x^n}}{x^n-\frac{1}{x^n}}\) thì 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

\(y=\frac{x^n+\frac{1}{x^n}}{x^n-\frac{1}{x^n}}=\frac{x^{2n}+1}{x^{2n}-1}\)

Xét \(y^2+1=\left(\frac{x^{2n}+1}{x^{2n}-1}\right)^2+1=\frac{x^{4n}+2x^{2n}+1}{x^{4n}-2x^{2n}+1}+1=\frac{2\left(x^{4n}+2\right)}{x^{4n}-2x^{2n}+1}\)

\(\Rightarrow\frac{y^2+1}{2y}=\frac{2\left(x^{4n}+1\right)}{x^{4n}-2x^{2n}+1}.\frac{x^{2n}-1}{2\left(x^{2n}+1\right)}=\frac{x^{4n}+1}{\left(x^{2n}-1\right)^2}.\frac{x^{2n}-1}{x^{2n}+1}=\frac{x^{4n}+1}{x^{4n}-1}=\frac{\frac{x^{4n}+1}{x^{2n}}}{\frac{x^{4n}-1}{x^{2n}}}=\frac{x^{2n}+\frac{1}{x^{2n}}}{x^{2n}-\frac{1}{x^{2n}}}\)

11 tháng 6 2016

Bạn thêm điều kiện x khác 0 nữa nhé

26 tháng 9 2018

e ko bt

29 tháng 12 2017

áp dụng bđt svacxơ, ta có 

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)

nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)

,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)

từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)

3 tháng 5 2017

Giả sử x là số hữu tỷ thì ta có

\(x=\frac{m}{n}\left(\left(m,n\right)=1\right)\)

\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)

Vì \(x-\frac{1}{x}\)là số nguyên nên m2 - n2 \(⋮\)m

\(\Rightarrow\)n2 \(⋮\)

Mà n,m nguyên tố cùng nhau nên

m = \(\pm\)1

Tương tự ta cũng có

n =\(\pm\)1

\(\Rightarrow\)x = \(\pm\)1

Trái giả thuyết.

Vậy x phải là số vô tỷ.

Ta có: \(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)

\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ.

Ta có: \(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\)nên là số nguyên

\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\)là số hữu tỷ.

Mà \(x+\frac{1}{x}\)là số vô tỷ nên

\(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)

là số vô tỷ

10 tháng 7 2019

\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có

\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)

       \(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
        \(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)

10 tháng 7 2019

\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)

28 tháng 8 2017

a/ \(x=\sqrt{2}-1\)

b/ Giả sử x là số vô tỷ 

\(x=\frac{m}{n}\left[\left(m,n\right)=1\right]\)

\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)

Vì \(x-\frac{1}{x}\)là số nguyên \(\Rightarrow m^2-n^2⋮m\)

\(\Rightarrow n^2⋮m\)

Mà m, n nguyên tố cùng nhau nên 

\(\Rightarrow n=1;-1\)

Tương tự ta cũng có: \(m=1;-1\)

\(\Rightarrow x=1;-1\) trái giả thuyết

\(\Rightarrow x\)là số vô tỷ

Ta có:

\(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)

\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ

Ta có:

\(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\) là số nguyên

\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\) là số hữu tỉ và \(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)là số vô tỉ.

30 tháng 8 2017

3689254

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình