K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2022

2n ⋮ n+1 ⇔ 2(n+1) - 2 ⋮ n+1 ⇔ 2 ⋮ n+1 ⇔ n+1 ϵ {-2;-1;1;2}

⇔nϵ{0;1}

c, (n2 +4) ⋮ (n+2) ⇔n2 + 2n - 2n - 4 + 8 ⋮ n+2

⇔ n(n +2 ) - 2(n+2) + 8 ⋮ n+2

⇔ (n+2)(n -2) +8 ⋮ n+2 

⇔ 8 ⋮ n+2 

⇔ n+2 ϵ {-8;-4;-2;-1;1;2;4;8}

⇔ n ϵ {0; 2; 6}

11 tháng 8 2022

Em cảm ơn chị nhiều

30 tháng 11 2023

Viết  lời giải ra giúp mình nhé !

 

7 tháng 10 2016

1) Số số hạng là n 

Tổng bằng : \(\frac{n\left(n+1\right)}{2}=378\\ \Rightarrow n\left(n+1\right)=756\\ \Rightarrow n\left(n+1\right)=27.28\\ \Rightarrow n=27\)

2) a) \(n+2⋮n-1\\ \Rightarrow n-1+3⋮n-1\\ \Rightarrow3⋮n-1\)

b) \(2n+7⋮n+1\\ \Rightarrow2\left(n+1\right)+5⋮n+1\\ \Rightarrow5⋮n+1\)

c) \(2n+1⋮6-n\\ \Rightarrow2\left(6-n\right)+13⋮6-n\\ \Rightarrow13⋮6-n\)

d) \(4n+3⋮2n+6\\ \Rightarrow2\left(2n+6\right)-9⋮2n+6\\ \Rightarrow9⋮2n+6\)

14 tháng 1 2018

a) \(n+1\inƯ\left(n^2+2n-3\right)\)

\(\Leftrightarrow n^2+2n-3⋮n+1\)

\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)

\(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)

\(\Leftrightarrow n+1-4⋮n+1\)

\(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-2\) \(2\) \(-4\) \(4\)
\(n\) \(-2\) \(0\) \(-3\) \(1\) \(-5\) \(3\)

Vậy...

b) \(n^2+2\in B\left(n^2+1\right)\)

\(\Leftrightarrow n^2+2⋮n^2+1\)

\(\Leftrightarrow n^2+1+1⋮n^2+1\)

\(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n^2+1\) \(-1\) \(1\)
\(n\) \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai)

\(0\) (tm)

Vậy \(n=0\)

c) \(2n+3\in B\left(n+1\right)\)

\(\Leftrightarrow2n+3⋮n+1\)

\(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

18 tháng 1 2018

a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)

⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1

⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1

n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1

⇔n+1−4⋮n+1⇔n+1−4⋮n+1

n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}

Ta có bảng sau:

n+1n+1 −1−1 11 −2−2 22 −4−4 44
nn −2−2 00 −3−3 11 −5−5 33

Vậy...

b) n2+2∈B(n2+1)n2+2∈B(n2+1)

⇔n2+2⋮n2+1⇔n2+2⋮n2+1

⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1

n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}

Ta có bảng sau:

n2+1n2+1 −1−1 11
nn √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai)

00 (tm)

Vậy n=0n=0

c) 2n+3∈B(n+1)2n+3∈B(n+1)

⇔2n+3⋮n+1⇔2n+3⋮n+1

⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1

⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1

2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}

Ta có bảng sau:

n+1n+1 −1−1 11
nn −2−2 00
19 tháng 8 2023

a.(2^2 : 4) . 2^n = 4

=>(4:4) . 2^n = 4

=>2^n = 4

=>2^n = 2^2

=>n=2

b.2.16 >_ 2^n > 4

=>32 >_ 2^n > 2^2

=>2^5 >_ 2^n > 2^2

=>n={3;4;5}

HQ
Hà Quang Minh
Giáo viên
19 tháng 8 2023

\(a,\left(2^2:4\right)\cdot2^n=4\\ \Leftrightarrow2^n=2^2\\ \Leftrightarrow n=2\)

\(b,2\cdot16\ge2^n>4\\ \Leftrightarrow2^5\ge2^n>2^2\\ \Rightarrow2< n\le5\\ \Leftrightarrow n\in\left\{3;4;5\right\}\)

30 tháng 6 2023

a, Ư(7) = { -7; -1; 1; 7}

Lập bảng ta có:

a +2 -7 -1 1 7
 -9 -3 -1 5

Theo bảng trên ta có:

\(a\) \(\in\) { -9; -3; -1; 5}

b, 2a + 1 \(\in\) Ư(12)

    Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

lập bảng ta có:

2a+1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12

a

 

-11/2

loại

-7/2

loại

-5/2

loại

-2

nhận

-3/2

loại

-1

nhận

0

nhận

1/2

loại

1

nhận

3/2

loại

5/2

loại

11/2

loại

 

Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:

\(\in\) {- 2; - 1; 0; 1}

 

30 tháng 6 2023

n + 5 \(⋮\) n - 2

n - 2 + 7 ⋮ n - 2

            7 ⋮ n -2

Ư(7) ={ -7; -1; 1; 7}

Lập bảng ta có:

n - 2 -7 -1 1 7
n -5 1 3 9

Theo bảng trên ta có:

\(\in\) { -5; 1; 3; 9}

 

 

7 tháng 8 2023

a) \(25⋮n+2\left(n\in Z\right)\)

\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)

\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)

b) \(2n+4⋮n-1\)

\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)

\(\Rightarrow2n+4-2n+2⋮n-1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)

c) \(1-4n⋮n+3\)

\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)

\(\Rightarrow1-4n+4n+12⋮n+3\)

\(\Rightarrow13⋮n+3\)

\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)

\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)

7 tháng 8 2023

a) n ϵ{3;1;7;3;27;23}

b) {0;2;1;3;2;4;5;7}

c) n ϵ {4;2;15;10}

a: A=3n^2-n-3n^2+6n=5n chia hết cho 5

b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6

c: =n^3+2n^2+3n^2+6n-n-2-n^3+2

=5n^2+5n

=5(n^2+n) chia hết cho 5

21 tháng 11 2021

a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.