số tự nhiên nào là số chính phương? ; số tự nào không phải là số chính phương?
9 ; 81 ; 121 ; 392
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n-m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=>n=11;m=13
TH2:2n-m=3 và 2n+m=105 <=>n=27; m=51
TH3:2n-m=5 và 2n+m=67 <=>n=17 và m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13 và m=19
TH5:2n-m=15 và 2n+m=21 <=>n=9 và m=3
Ta có a+71=n2
=> a lớn nhất khi n lớn nhất
=>n=27
=>a=272-71=658
Vậy max a=658
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.Ta có: 2 + 4 + 6 +… + ( 2n ) = ( 2n + 2 ) . n : 2 = n ( n+1 )
Mà n . n < n ( n+1 ) < ( n + 1 )( n + 1 ) ⇒ n 2 < n ( n + 1 ) < n + 1 2
n 2 và n + 1 2 là số chính phương liên tiếp nên n ( n + 1 ) không thể là số chính phương. Ta có điều cần chứng minh.
Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)
\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)
mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)
Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương
giả sử n2 + 2002 = a2
nếu a và n không cùng tính chẵn lẻ
a2 - n2 là số lẻ
mà 2002 là số chẵn
nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương
nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )
vậy ko có số nào thích hợp
Gọi số cần tìm là a
ta có n^2+2002=a^2
a^2-n^2=2002
(a-n)(a+n)=2002
do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2
mà a-n-(a+n)=-2n chia hết cho 2
=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2
mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4
=>(a-n)(a+n) chia hết cho 4
mà 2002 ko chia hết cho 4
=>ko có số thự nhiên nào để n^2 +2002 là số chính phương
Lời giải:
\(a=\underbrace{111....1}_{2n}; b=\underbrace{22....2}_{n}\)
Đặt \(\underbrace{11...11}_{n}=a\Rightarrow 10^n=9a+1\)
Khi đó:
\(a-b=\underbrace{11...1}_{n}\underbrace{000...0}_{n}+\underbrace{11...1}_{n}-2.\underbrace{11...1}_{n}\)
\(=a(9a+1)+a-2a=9a^2=(3a)^2\) là số chính phương. Ta có đpcm.
9 = 32; 81 = 92; 121 = 112 vậy 9; 81; 121 là số chính phương (theo khái niệm về một số chính phương)
392 có tận cùng là 2 vậy 392 không phải là số chính phương vì số chính phương không thể có tận cùng là 2; 3; 7; 8 (theo tính chất của một số chính phương)
9, 81, 121 là số chính phương. 392 không phải nhé.