K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2022

để 2n+7/n-1 là số tự nhiên thì 2n+7⋮ n-1 

⇔ 2(n-1) + 9 ⋮ n-1 ⇔ 9⋮ n-1 ⇔ n-1 ϵ { 1;3;9}

⇔ n ϵ { 2; 4;10}

 

10 tháng 2 2018

Ta có: 2.n^2-n+2 chia hết cho 2n+1

=> n.(2n+1)-n-n+2 chia hết cho 2n+1

=> n.(2n+1) - ( 2n-2) chia hết cho 2n+1

=> n.(2n+1) - (2n+1) -3 chia hết cho 2n +1

Vì n.(2n+1) - (2n+1) chia hết cho 2n+1 

=> 3 chia hết cho 2n+1

=> 2n+1 thuộc Ư (3)= 1,3

Ta có bảng: 

2n+1n
31
10

Vậy n =0;1

10 tháng 2 2018

Ta có: 2.n^2-n+2 chia hết cho 2n+1

=> n.(2n+1)-n-n+2 chia hết cho 2n+1

=> n.(2n+1) - ( 2n-2) chia hết cho 2n+1

=> n.(2n+1) - (2n+1) -3 chia hết cho 2n +1

Vì n.(2n+1) - (2n+1) chia hết cho 2n+1 

=> 3 chia hết cho 2n+1

=> 2n+1 thuộc Ư (3)= 1,3

Ta có bảng: 

2n+1n
31
10

Vậy n =0;1

8 tháng 5 2015

\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)

\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)

\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)

=>n+3 \(\in U_{\left(1\right)}\)

ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)

ta co bang :

n+31-1
n-2   -4     

vi n \(\in\)N

=>n khong co gia tri

13 tháng 11 2016

Gọi số cần tìm là abcd

Ta có :

abcd + abc = 2216

( abc . 10 + d ) + abc = 2216

abc . 11 + d = 2216

Suy ra d = 5

Vậy abc = 201

Số cần tìm : 2015

14 tháng 11 2018

Gọi d là ƯC ( n+1,2n+3)

Suy ra n+1 \(⋮\)d ; 2n +3 \(⋮\)d

n +1\(⋮\)\(\Rightarrow\)2 (n+1)\(⋮\)d

              \(\Rightarrow\)2n +2 \(⋮\)d

Do đó : (2n + 3) -  (2n +2 )\(⋮\)d

2n+3 - 2n -2 \(⋮\)d

1\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư (1)={1}

\(\Rightarrow\)ƯC (n +1 , 2n +3 ) = {1}

\(\Rightarrow\)ƯCLN (n +1, 2n +3 ) =1

Bài sau tương tự nha bn.Chúc bn học tốt !!!

7 tháng 12 2020

a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)

\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}

b/

\(2A=2+2^2+2^3+2^4+...2^{2019}\)

\(\Rightarrow A=2A-A=2^{2019}-1\)

=> A, B là 2 số tự nhiên liên tiếp

10 tháng 4 2019

P=(n^4+n^3)+(n^3+n^2)+(n^2+n)+(n+1)

P=n^3(n+1)+n^2(n+1)+n(n+1)+(n+1)

P=(n^3+n^2+n+1)(n+1)

P=[(n^3+n^2)+(n+1)](n+1)

P=[n^2(n+1)+(n+1)](n+1)

P=[(n^2+1)(n+1)](n+1)

P=(n^2+1)(n+1)^2

Mà P là số chính phương , (n+1)^2 là số chính phương

=> n^2+1 là số chính phương

=> n^2+1=a^2(a là số nguyên)

=> n^2-a^2=-1

=>(n+a)(n-a)=-1

mà n là số tự nhiên, a là số nguyên=> n+a,n-a là số nguyên

=> n+a=-1 ; n-a=1 hoặc n+a=1; n-a=-1

=> n=0; a=-1 hoặc n=0; a=1

Vậy n=0