x^1.x^2.....x^2006
x.x^4.x^7.....x^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) 64 . 4x = 168
=> 43 . 4x = ( 42 )8
=> 43 . 4x = 416
=> 43+x = 416
=> 3 + x = 16
=> x = 13
Vậy x = 13
b) x10 = 1x
Ta có: x10 = 1x
<=> x = 1
Hay 110 = 11
=> 1 = 1
Vậy x = 1
c) ( 7x - 11 )3 = 25 . 52 + 200
=> ( 7x - 11 )3 = 32 . 25 + 200
=> ( 7x - 11 )3 = 1000
=> ( 7x - 11 )3 = 103
=> 7x - 11 = 10
=> 7x = 21
=> x = 3
Vậy x = 3
# Học tốt #
a)\(5x\cdot5x\cdot5x=\left(5x\right)^3\)
b) \(x^1\cdot x^2\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}=x^{2013021}\)
c)\(x\cdot x^4\cdot x^7\cdot...\cdot x^{100}=x^{1+4+7+...+100}=x^{101\cdot17}=x^{1717}\)
=x^2.x^8.x^4.x^6.x^10/x^1.x^9.x^3.x^7.x^3=3^5
=x^10.x^10.x^10 / x^10.x^10.x^5=3^5
=x^10/x^5=3^5
=x^5=3^5
x=3
\(x^2.x^4.x^6.x^8.x^{10}:\left(x.x^3.x^5.x^7.x^9\right)=243\)
\(x^{2+4+6+8+10}:x^{1+3+5+7+9}=243\)
\(x^{30}:x^{25}=243\)
\(x^{30-25}=243\)
\(x^5=243\)
\(x^5=3^5\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
a) \(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}=0\)
\(\Leftrightarrow\)\(\frac{x+1}{4}-1-\frac{x+2}{5}+1+\frac{x+4}{7}-1-\frac{x+5}{8}+1+\frac{x+7}{10}-1-\frac{x+9}{12}+1=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}-\frac{3-x}{5}+\frac{x-3}{7}-\frac{3-x}{8}+\frac{x+3}{10}-\frac{3-x}{12}=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}+\frac{x-3}{5}+\frac{x-3}{7}+\frac{x-3}{8}+\frac{x-3}{10}+\frac{x-3}{12}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\right)=0\)
Vì \(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\ne0\)
\(\Rightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy...
b) \(\frac{x}{2004}+\frac{x+1}{2005}+\frac{x+2}{2006}+\frac{x+3}{2007}=4\)
\(\Leftrightarrow\)\(\frac{x}{2004}-1+\frac{x+1}{2005}-1+\frac{x+2}{2006}-1+\frac{x+3}{2007}-1=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2004}+\frac{x-2004}{2005}+\frac{x-2004}{2006}+\frac{x-2004}{2007}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Leftrightarrow\)\(x=2004\)
Vậy...
Xét : `1+2+...+2006`
Dãy trên có `2006` số hạng
Tổng dãy trên : `(2006+1).2006:2=2013021`
Ta có : `x^{1}.x^{2}....x^{2006}=x^{1+2+...+2006}=x^{2013021}`
`x.x^{4}.x^{7}.x^{10}=x^{1+4+7+10}=x^{22}`