Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
a)\(4^{10}\).\(2^{30}\)
b)\(9^{25}\).\(27^4\)
c)\(25^{50}\).\(125^5\)
d)\(64^3\).\(4^8\).\(16^4\)
g)\(5^3\).\(x^3\)hoặc \(\left(5x\right)^3\)
h)\(x\).\(x^2\). ... . \(x^{2006}\)
i)\(x\).\(x^4\).\(x^7\). ... .\(x^{100}\)
k)\(x^2\).\(x^5\).\(x^8\). ... .\(x^{2003}\)
Đó là lời giải hết đó nha bạn. Chúc bạn 1 ngày vui vẻ.
a, \(3^4\)
b, \(8^7:8^2\)
c, \(x^3.x^2.x\)
d, \(4^n.4^2\)
e, \(3^{k+2}:3^k\)
a, 3^4
b,8^7:8^2=8^5
c, x^3.x^2.x=x^6
d,4^n.4^2=4^(n+2)
e, 3^k+2:3^k
=3^k.(1+2)
=3^k.3
=3^(k+10
Mấy bài này đẽ ẹc mà !!!
A, 2^5 x 8^4 = 2^5 x (2^3)^4 B,25^6 x 125^3=(5^2)^6 x (5^3)^3
= 2^5 x 2^12 =5^12 x 5^9
=2^17 =5^21
a: \(A=8^2\cdot32^4=2^6\cdot2^{20}=2^{26}\)
b: \(B=27^3\cdot9^4\cdot243=3^9\cdot3^8\cdot3^5=3^{22}\)
1/ a) \(2.3.12.12.3=2.3.2^2.3.2^2.3.3=2^5.3^4\)
b) \(3.5.27.125=3.5.3^3.5^3=3^4.5^4=\left(3.5\right)^4\)
2/ a) \(\left(27^3\right)^4=27^{3.4}=27^{12}\)
Vậy \(\left(27^3\right)^4=27^{12}\)
b) \(5^{36}=\left(5^6\right)^6\) và \(11^{24}=\left(11^4\right)^6\)
Do đó \(5^6=15625\) và \(11^4=14641\)
Vì 15625>14641 nên\(\left(5^6\right)^6>\left(11^4\right)^6hay5^{36}>11^{24}.\)
3/ a) \(x^3=125=>x=5\)
b) \(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-14\right)^3=1000\)
\(3x-14=10^3\)
\(3x=10^3+14\)
\(3x=1014\)
\(x=\frac{1014}{3}=338\)
c) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(2x-1=3\)
\(2x=3+1\)
\(x=\frac{4}{2}=2\)
d) \(5x+3^4=2^2.7^2\)
\(5x+3^4=\left(2.7\right)^2=14^2\)
\(5x+81=196\)
\(5x=196-81\)
\(5x=115\)
\(x=\frac{115}{5}=23\)
e) \(4^x=1024=>x=5\).
Huyền ơi cùng anh nào đấy kks
\(5x\cdot5x\cdot5x=\left(5x\right)^3\)
\(x^1\cdot x^2\cdot...\cdot x^{2006}=x^{2013021}\)
\(x\cdot x^4\cdot x^7\cdot...\cdot x^{100}=x^{1717}\)
\(x^2\cdot x^5\cdot x^8\cdot...\cdot x^{2003}=x^{669670}\)
Nếu đúng thì cho mình xin cái !!!