vẽ tia Ay trên tia Ay lấy 3 điểm B,C,E sao cho AB=2cm,AC=4cm,AE=6cm
Gọi I là trung điểm của BC chứng tỏ I là trung điểm của AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt hạ DM, EN vuông góc AH tại M, N
ta có (góc có cạnh tương ứng vuông góc) (1)
AD =CA (2)
DAM^=ACH^ (góc có cạnh tương ứng vuông góc) (3)
từ (1, 2, 3)=>△ADM=△CAH (g, c, g)
=>DM =AH (4)
c minh tương tự △AEN=△BAH (g, c, g)
=>EN =AH (5)
từ (4, 5) =>DM =EN
mà DM //EN
DMEN là hình bình hành
=>MN đi qua trung điểm I của DE
hay AH đi qua trung điểm I của DE (đpcm)
Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.
Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)
Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)
Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)
Kéo dài NI cắt DE tại J, AI cắt DE tại F.
Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)
Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)
Hay \(AM\perp DE.\)