K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2022

\(7-4\sqrt{3}=7-2.2\sqrt{3}=4-2.2\sqrt{3}+3=\left(2-\sqrt{3}\right)^2=\left(\sqrt{3}-2\right)^2\)

a, \(=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)

b, \(=\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

c, \(=\sqrt{\left(2\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=2\sqrt{2}+1-\sqrt{2}+1=\sqrt{2}+2\)

7 tháng 3 2020

a.

=(5^7+5^9)(6^8+6^10)(16-4^2)

=(5^7+5^9)(6^8+6^10)(16-16)

=(5^7+5^9)(6^8+6^10).0

=0

a, =5^16 . 6^18 . 0 

=0

chúc bn hc tốt

9 tháng 7 2023

\(A=1-2+3-4+5-6+7-8+...+99-100\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(A=\left(-1\right).50\)

\(A=-50\)

\(B=1+3-5-7+9+11-...-397-399\)

\(B=1-2+2-2+2-...+2-2-399\)

\(B=1-399\)

\(B=-398\)

\(C=1-2-3+4+5-6-7+...+97-98-99+100\)

\(C=-1+1-1+1-...-1+1\)

\(C=0\)

\(D=2^{2024}-2^{2023}-...-1\)

\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)

\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)

\(D=2^{2024}-\left(2^{2024}-1\right)\)

\(D=2^{2024}-2^{2024}+1\)

\(D=1\)

9 tháng 7 2023

A = 1 - 2 + 3  - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100

A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)

Xét dãy số 1; 3; 5;...;99

Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2

Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)

Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1

A =  - 1\(\times\)50 = -50

b, 

B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399

B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)

B = -8 + (-8) +...+ (-8)

Xét dãy số 1; 9; ...;393

Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8

Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)

Tổng B có 50 nhóm mỗi nhóm có giá trị là -8

B = -8 \(\times\) 50 = - 400

c, 

C = 1 - 2 - 3 + 4 + 5 -  6 +...+ 97 - 98 - 99 +100

C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)

C = 0 + 0 + 0 +...+0

C = 0

d,   D =           22024 - 22023- ... +2 - 1

    2D = 22005- 22004 + 22003+...- 2

2D + D = 22005 - 1

 3D      = 22005 - 1

   D      = (22005 - 1): 3

16 tháng 7 2023

a) \(2^5\cdot2^7\)

\(=2^{5+7}\)

\(=2^{12}\)

b) \(2^3\cdot2^2\)

\(=2^{3+2}\)

\(=2^5\)

c) \(2^4\cdot2^3\cdot2^5\)

\(=2^{4+3+5}\)

\(=2^{12}\)

d) \(2^2\cdot2^4\cdot2^6\cdot2\)

\(=2^{2+4+6+1}\)

\(=2^{13}\)

e) \(2\cdot2^3\cdot2^7\cdot2^4\)

\(=2^{1+3+7+4}\)

\(=2^{15}\)

f) \(3^8\cdot3^7\)

\(=3^{8+7}\)

\(=3^{15}\)

g) \(3^2\cdot3\)

\(=3^{2+1}\)

\(=3^3\)

h) \(3^4\cdot3^2\cdot3\)

\(=3^{4+2+1}\)

\(=3^7\)

I) \(3\cdot3^5\cdot3^4\cdot3^2\)

\(=3^{1+5+4+2}\)

\(=3^{12}\)

7 tháng 4 2020

a) \(\frac{2^7\cdot9^3}{6^5\cdot8^2}=\frac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\frac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\frac{3}{2^4}=\frac{3}{16}\)

c) \(\frac{5^4\cdot20^4}{25^4\cdot4^5}=\frac{5^4\cdot\left(2^2\cdot5\right)^4}{\left(5^2\right)^4\cdot\left(2^2\right)^5}=\frac{5^4\cdot2^8\cdot5^4}{5^8\cdot2^{10}}=\frac{1}{2^2}=\frac{1}{4}\)

d) \(\frac{\left(5^4\cdot20^4\right)^3}{125^4}=\frac{5^{12}\cdot20^{12}}{\left(5^3\right)^4}=\frac{5^{12}\cdot\left(2^2\cdot5\right)^{12}}{5^{12}}=2^{24}\cdot5^{12}\)