K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2022

- Ta có: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(\Rightarrow\left(x^3-1\right)⋮\left(x^2+x+1\right)\)

- Áp dụng hệ quả nhị thức Newton ta có: \(x^n-1⋮x-1\) với \(n\in N\).

- Vì \(n\) không chia hết cho \(3\) \(\Rightarrow n\) có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\in N\right)\)

- Với \(n=3k+1\) thì:

\(x^{2n}+x^n+1=x^{2\left(3k+1\right)}+x^{3k+1}+1=x^{6k+2}+x^{3k+1}+1=x^{3k+2}\left(x^{3k}-1\right)+x^{3k}\left(x^2+x+1\right)-\left(x^{3k}-1\right)\)

- Do \(\left\{{}\begin{matrix}x^{3k+2}\left(x^{3k}-1\right)⋮\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\\x^{3k}\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\\\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\end{matrix}\right.\) 

\(\Rightarrow x^{3k+2}\left(x^{3k}-1\right)+x^{3k}\left(x^2+x+1\right)-\left(x^{3k}-1\right)⋮\left(x^2+x+1\right)\)

hay \(x^{2n}+x^n+1⋮x^2+x+1\) khi \(n=3k+1\left(k\in N\right)\) (1).

- Với \(n=3k+2\) thì:

\(x^{2n}+x^n+1=x^{2\left(3k+2\right)}+x^{3k+2}+1=x^{6k+4}+x^{3k+2}+1=x^{3k+4}\left(x^{3k}-1\right)+x^{3k+2}\left(x^2+x+1\right)-\left(x^{3k+3}-1\right)\)- Do \(\left\{{}\begin{matrix}x^{3k+4}\left(x^{3k}-1\right)⋮\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\\x^{3k+2}\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\\\left(x^{3\left(k+1\right)}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\end{matrix}\right.\) 

\(\Rightarrow x^{3k+4}\left(x^{3k}-1\right)+x^{3k+2}\left(x^2+x+1\right)-\left(x^{3k+3}-1\right)⋮\left(x^2+x+1\right)\)

 hay  \(x^{2n}+x^n+1⋮x^2+x+1\) khi \(n=3k+2\left(k\in N\right)\) (2).

- Từ (1), (2) ta suy ra đpcm

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

13 tháng 11 2015

TẤT CẢ ĐỀU CÓ TRONG  " câu hỏi tương tự "

19 tháng 10 2015

dài quá mình ko làm hết.

3 tháng 11 2016

1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)

=>y=4

=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9

                                   => (x+22) chia hết cho 9

=>x=5

vậy số cần tìm là 53784

3 tháng 11 2016

1.b)3x23y chia hết cho 5 => y chia hết cho 5

=>y= 0 hoặc 5

TH1.1: nếu y=0,x là chẵn

=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)

                                    =>5-(x+3) hoặc (x+3)-5 chia hết cho 11 

ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11

nếu (x+3)-5=0 thì x=2(chọn)

nếu (x+3)-5=11 thì x=13(loại)

nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)

vậy số cần tìm là 32230

K CHO MÌNH NHÉ !!!!!!

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.