K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2022

- Ta có: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(\Rightarrow\left(x^3-1\right)⋮\left(x^2+x+1\right)\)

- Áp dụng hệ quả nhị thức Newton ta có: \(x^n-1⋮x-1\) với \(n\in N\).

- Vì \(n\) không chia hết cho \(3\) \(\Rightarrow n\) có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\in N\right)\)

- Với \(n=3k+1\) thì:

\(x^{2n}+x^n+1=x^{2\left(3k+1\right)}+x^{3k+1}+1=x^{6k+2}+x^{3k+1}+1=x^{3k+2}\left(x^{3k}-1\right)+x^{3k}\left(x^2+x+1\right)-\left(x^{3k}-1\right)\)

- Do \(\left\{{}\begin{matrix}x^{3k+2}\left(x^{3k}-1\right)⋮\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\\x^{3k}\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\\\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\end{matrix}\right.\) 

\(\Rightarrow x^{3k+2}\left(x^{3k}-1\right)+x^{3k}\left(x^2+x+1\right)-\left(x^{3k}-1\right)⋮\left(x^2+x+1\right)\)

hay \(x^{2n}+x^n+1⋮x^2+x+1\) khi \(n=3k+1\left(k\in N\right)\) (1).

- Với \(n=3k+2\) thì:

\(x^{2n}+x^n+1=x^{2\left(3k+2\right)}+x^{3k+2}+1=x^{6k+4}+x^{3k+2}+1=x^{3k+4}\left(x^{3k}-1\right)+x^{3k+2}\left(x^2+x+1\right)-\left(x^{3k+3}-1\right)\)- Do \(\left\{{}\begin{matrix}x^{3k+4}\left(x^{3k}-1\right)⋮\left(x^{3k}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\\x^{3k+2}\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\\\left(x^{3\left(k+1\right)}-1\right)⋮\left(x^3-1\right)⋮\left(x^2+x+1\right)\end{matrix}\right.\) 

\(\Rightarrow x^{3k+4}\left(x^{3k}-1\right)+x^{3k+2}\left(x^2+x+1\right)-\left(x^{3k+3}-1\right)⋮\left(x^2+x+1\right)\)

 hay  \(x^{2n}+x^n+1⋮x^2+x+1\) khi \(n=3k+2\left(k\in N\right)\) (2).

- Từ (1), (2) ta suy ra đpcm

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

14 tháng 10 2018

Vì n và n + 1 là 2 STN liên tiếp nên đa thức có dạng:

      \(\left(x^{2k}-1\right)\left(x^{2k+1}-1\right)\)

\(=\left(x^2-1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)

\(=\left(x-1\right)\left(x+1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)

\(=\left(x+1\right)\left(x-1\right)^2P\left(x\right)Q\left(x\right)⋮\left(x+1\right)\left(x-1\right)^2\)

28 tháng 3 2019

Đề bài hình như thiếu dữ liệu thì phải ha,bạn xem lại đề nha!

Mk đọc đề cảm thấy đề cứ cộc lốc kiểu j ấy.Nooooo có dữ liệu j cả nha!

Kb vs mk nhé!

28 tháng 3 2019

ko có dữ kiện bạn ạ nó chỉ có như v thôi 

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!