A=(1-1/3)x(1-1/4)x(1-1/5)x...x(1-1/2020)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35-12}{20}=\dfrac{23}{20}\)
d: \(\left(-\dfrac{1}{4}\right)^2\cdot\dfrac{4}{11}+\dfrac{7}{11}\cdot\left(-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
\(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35}{20}+\dfrac{-12}{20}=\dfrac{23}{20}\)
1. \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}=\dfrac{2020}{2021}\)
Giải:
1) \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=\left(\dfrac{2019}{2020}-\dfrac{2019}{2020}\right)+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}\)
\(=\dfrac{2020}{2021}\)
2) \(\dfrac{2}{9}+\dfrac{7}{9}:\left(\dfrac{42}{5}-\dfrac{7}{5}\right)\)
\(=\dfrac{2}{9}+\dfrac{7}{9}:7\)
\(=\dfrac{2}{9}+\dfrac{1}{9}\)
\(=\dfrac{1}{3}\)
3) \(\dfrac{3}{4}+\dfrac{x}{4}=\dfrac{5}{8}\)
\(\dfrac{x}{4}=\dfrac{5}{8}-\dfrac{3}{4}\)
\(\dfrac{x}{4}=\dfrac{-1}{8}\)
\(\Rightarrow x=\dfrac{4.-1}{8}=\dfrac{-1}{2}\)
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x-1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x-1\right|=0\)
\(3x-1=0\)
\(3x=0+1\)
\(3x=1\)
\(x=1:3\)
\(x=\dfrac{1}{3}\)
Chúc bạn học tốt!
\(\left(1+\dfrac{2}{3}\right).\left(1+\dfrac{2}{4}\right).\left(1+\dfrac{2}{5}\right)....\left(1+\dfrac{2}{2020}\right).\left(1+\dfrac{2}{2021}\right)\)
= \(\dfrac{5}{3}.\dfrac{6}{4}.\dfrac{7}{5}.\dfrac{8}{6}.\dfrac{9}{7}....\dfrac{2022}{2020}.\dfrac{2023}{2021}\)
= \(\dfrac{1}{3}.\dfrac{1}{4}.2022.2023\)
= \(\dfrac{337.2023}{2}\)
= \(\dfrac{\text{681751}}{2}\)
A = (1+1) \(\times\) (1+\(\dfrac{1}{2}\)) \(\times\) (1+\(\dfrac{1}{3}\)) \(\times\)....\(\times\)(1+ \(\dfrac{1}{2020}\))
A = 2 \(\times\) \(\dfrac{3}{2}\) \(\times\) \(\dfrac{4}{3}\) \(\times\) \(\dfrac{5}{4}\) \(\times\).......\(\times\) \(\dfrac{2021}{2020}\)
A =\(\dfrac{2\times3\times4\times....\times2020}{2\times3\times4\times....\times2020}\) \(\times\) \(\dfrac{2021}{1}\)
A = 1 \(\times\) 2021
A = 2021
B=5+2(x-2019)2020
Vì (x-2019)2020 ≥0
=>5+(x-2019)2020 ≥5
Để B đạt Min
=>x-2019=0
=>x=2019
Vậy MinB=5 <=>x=2019
\(F=1\dfrac{1}{5}\times1\dfrac{1}{6}\times1\dfrac{1}{7}\times\cdot\cdot\cdot\times1\dfrac{1}{2019}\times1\dfrac{1}{2020}\)
\(F=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times\cdot\cdot\cdot\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)
\(F=\dfrac{6\times7\times8\times\cdot\cdot\cdot\times2020\times2021}{5\times6\times7\times\cdot\cdot\cdot\times2019\times2020}\)
\(F=\dfrac{2021}{5}\)
\(Huyền\) |
\(f=1^1_5\times1^1_6\times1^1_7\times......\times1^1_{2019}\times1^1_{2022}\)
\(f=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times....\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)
\(f=\dfrac{6\times7\times8\times....\times2020\times2021}{5\times6\times7\times.....\times2019\times2020}\)
\(f=\dfrac{2021}{5}\)
\(#Tarus\)
Hello bạn, mk cx tên Mai nek.
\(\frac{2}{5}.\left(x-1\right)+1=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}\left(x+1\right)=\frac{3}{5}-1\)
\(\Rightarrow\frac{2}{5}\left(x+1\right)=-\frac{2}{5}\)
\(\Rightarrow x+1=-\frac{2}{5}:\frac{2}{5}\)
\(\Rightarrow x+1=-1\)
\(\Rightarrow x=-1-1\)
\(\Rightarrow x=-2\)
\(\left(\frac{2}{7}\times x+1\right)\times\left(3-\frac{1}{2}\times x\right)=0\)
\(TH1:\frac{2}{7}\times x+1=0\)
\(\frac{2}{7}\times x=-1\)
\(x=-\frac{2}{7}\)
\(TH2:3-\frac{1}{2}\times x=0\)
\(\frac{1}{2}\times x=3\)
\(x=\frac{3}{2}\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{7}\right\}\)
\(A=-\left|2x-3\right|+1< =1\)
Dấu = xảy ra khi x=3/2
\(C=-\left|5x+2\right|-\left|3y+12\right|+4< =4\)
Dấu = xảy ra khi x=-2/5 và y=-4
\(D=-3\left(x+1\right)^2+5< =5\)
Dấu = xảy ra khi x=-1
\(E=\dfrac{1}{2}\left(x+1\right)^2+3>=3\)
Dấu = xảy ra khi x=-1
\(F=\dfrac{15}{4}+3\left|x-1\right|>=\dfrac{15}{4}\)
Dấu = xảy ra khi x=1
\(A=\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)....\left(1-\frac{1}{2020}\right)\)
\(A=\frac{2}{3}.\frac{3}{4}.\frac{4}{5}......\frac{2019}{2020}\)
\(A=\frac{2.3.4.5.....2019}{3.4.5....2019.2020}\)
Loại Bỏ các tử số và mẫu số giống nhau trong phân số A
\(\Rightarrow A=\frac{2}{2020}=\frac{1}{1010}\)