(2x^3-3xy+12x)(-1/6x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=3x\left(y-z\right)-y\left(y-z\right)=\left(3x-y\right)\left(y-z\right)\\ b,=x^3\left(x-1\right)+x\left(x-1\right)=x\left(x^2+1\right)\left(x-1\right)\\ c,=x\left(y+z\right)+y\left(y+z\right)=\left(x+y\right)\left(y+z\right)\\ d,=\left(x-3\right)^2\\ e,=\left(x+2\right)^3\\ f,=\left(2x-x+y\right)\left(2x+x-y\right)=\left(x+y\right)\left(3x-y\right)\\ g,=\left(y+1\right)\left(5x-2\right)\\ h,=\left(x+2\right)^2\\ i,=x^2\left(x^2-2\right)\\ k,=3x\left(x-4y\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(3xy-6xy^2=3xy\left(1-2y\right)\)
b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
c) \(x^3-x^2+2\)
d) \(x^2+4x+4-y^2=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
e) \(x^3+4x^2+4x=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)
f) \(x^2+2x+1-9y^2=\left(x+1\right)^2-\left(3y\right)^2=\left(x-3y+1\right)\left(x+3y+1\right)\)
g) \(6x^2-12x=6x\left(x-2\right)\)
h) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
i) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.
\(2x-1^3+8\)
\(=2x-9\)
\(=\left(\sqrt{2x}\right)^2-3^2\)
\(=\left(\sqrt{2x}-3\right)\left(\sqrt{2x}+3\right)\)
_________
\(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
_______________
\(8x^3-12x^2+6x-2\)
\(=8x^3-12x^2+6x-1-1\)
\(=\left(2x-1\right)^3-1\)
\(=\left(2x-1-1\right)\left(4x^2-4x+1+2x-1+1\right)\)
\(=\left(2x-2\right)\left(4x^2-2x+1\right)\)
\(=2\left(x-1\right)\left(4x^2-2x+1\right)\)
________
\(9x^3-12x^2+6x-1\)
\(=x^3+8x^3-12x^2+6x-1\)
\(=x^3+\left(2x-1\right)^3\)
\(=\left(x+2x-1\right)\left(x^2-2x^2-x+4x^2-4x+1\right)\)
\(=\left(3x-1\right)\left(3x^2-5x+1\right)\)
b: 8x^3-12x^2+6x-1
=(2x)^3-3*(2x)^2*1+3*2x*1^2-1^3
=(2x-1)^3
c: =(8x^3-12x^2+6x-1)-1
=(2x-1)^3-1
=(2x-1-1)[(2x-1)^2+2x-1+1]
=2(x-1)(4x^2-4x+1+2x)
=2(x-1)(4x^2-2x+1)
Tham Khảo:
https://olm.vn/hoi-dap/detail/264041645597.html
Sai thì hong bít j đâu ;-;
\(7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\)
\(\Leftrightarrow\left(8x^3-12x^2+6x-1\right)-\left(x^3-3x^2y+3xy^2-y^3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^3-\left(x-y\right)^3=0\)
\(\Leftrightarrow2x-1=x-y\)
\(\Leftrightarrow y=1-x\)
Thế xuống dưới:
\(\sqrt[3]{3x+2}+\sqrt{x+2}=4\)
\(\Leftrightarrow\sqrt[3]{3x+2}-2+\sqrt{x+2}-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{\sqrt[3]{\left(3x+2\right)^2}+2\sqrt[3]{3x+2}+4}+\dfrac{1}{\sqrt{x+2}+2}\right)=0\)
\((2x^3-3xy+12x).(-\dfrac{1}{6}x)\)
\(=-\dfrac{1}{3}x^4+\dfrac{1}{2}x^2 y-2x^2\)
Sửa đề:
\(\left(2x^3-3xy+12x\right)\left(-\dfrac{1}{6}xy\right)\)
\(\left(-\dfrac{1}{6}xy\right).2x^3-3xy\left(-\dfrac{1}{6}xy\right)+12x\left(-\dfrac{1}{6}xy\right)\)
\(-\dfrac{1}{3}x^4y+\dfrac{1}{2}x^2y^2-2x^2y\)