Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=3x\left(y-z\right)-y\left(y-z\right)=\left(3x-y\right)\left(y-z\right)\\ b,=x^3\left(x-1\right)+x\left(x-1\right)=x\left(x^2+1\right)\left(x-1\right)\\ c,=x\left(y+z\right)+y\left(y+z\right)=\left(x+y\right)\left(y+z\right)\\ d,=\left(x-3\right)^2\\ e,=\left(x+2\right)^3\\ f,=\left(2x-x+y\right)\left(2x+x-y\right)=\left(x+y\right)\left(3x-y\right)\\ g,=\left(y+1\right)\left(5x-2\right)\\ h,=\left(x+2\right)^2\\ i,=x^2\left(x^2-2\right)\\ k,=3x\left(x-4y\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(3xy-6xy^2=3xy\left(1-2y\right)\)
b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
c) \(x^3-x^2+2\)
d) \(x^2+4x+4-y^2=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
e) \(x^3+4x^2+4x=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)
f) \(x^2+2x+1-9y^2=\left(x+1\right)^2-\left(3y\right)^2=\left(x-3y+1\right)\left(x+3y+1\right)\)
g) \(6x^2-12x=6x\left(x-2\right)\)
h) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
i) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
\(2x-1^3+8\)
\(=2x-9\)
\(=\left(\sqrt{2x}\right)^2-3^2\)
\(=\left(\sqrt{2x}-3\right)\left(\sqrt{2x}+3\right)\)
_________
\(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
_______________
\(8x^3-12x^2+6x-2\)
\(=8x^3-12x^2+6x-1-1\)
\(=\left(2x-1\right)^3-1\)
\(=\left(2x-1-1\right)\left(4x^2-4x+1+2x-1+1\right)\)
\(=\left(2x-2\right)\left(4x^2-2x+1\right)\)
\(=2\left(x-1\right)\left(4x^2-2x+1\right)\)
________
\(9x^3-12x^2+6x-1\)
\(=x^3+8x^3-12x^2+6x-1\)
\(=x^3+\left(2x-1\right)^3\)
\(=\left(x+2x-1\right)\left(x^2-2x^2-x+4x^2-4x+1\right)\)
\(=\left(3x-1\right)\left(3x^2-5x+1\right)\)
b: 8x^3-12x^2+6x-1
=(2x)^3-3*(2x)^2*1+3*2x*1^2-1^3
=(2x-1)^3
c: =(8x^3-12x^2+6x-1)-1
=(2x-1)^3-1
=(2x-1-1)[(2x-1)^2+2x-1+1]
=2(x-1)(4x^2-4x+1+2x)
=2(x-1)(4x^2-2x+1)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
a, \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3\)
b, \(\left(a^3-2a^2+a-1\right)\left(a-5\right)\)
\(=a^4-2a^3+a^2-a-5a^3+10a^2-5a+5\)
\(=a^4-7a^3+11a^2-6a+5\)
c, \(\left(x^2-2x+y^2\right)\left(x-y\right)-3xy\left(y-x\right)\)
\(=x^3-2x^2+xy^2-x^2y+2xy-y^3-3xy^2+3x^2y\)
\(=x^3-2x^2-2xy^2-2x^2y+2xy-y^3\)
Bài 2:
a, \(\left(12x-5\right)\left(x+1\right)+\left(6x-2\right)\left(3-2x\right)=5\)
\(\Rightarrow12x^2+12x-5x-5+18x-12x^2-6+4x=5\)
\(\Rightarrow29x=5+5+6\)
\(\Rightarrow29x=16\Rightarrow x=\dfrac{16}{29}\)
b, \(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7=-8\)
\(\Rightarrow2x^2+3x-10x-15-2x^2+6x+x+7=-8\)
\(\Rightarrow0x=-8\Rightarrow x\in\varnothing\)
Chúc bạn học tốt!!!
\((2x^3-3xy+12x).(-\dfrac{1}{6}x)\)
\(=-\dfrac{1}{3}x^4+\dfrac{1}{2}x^2 y-2x^2\)
Sửa đề:
\(\left(2x^3-3xy+12x\right)\left(-\dfrac{1}{6}xy\right)\)
\(\left(-\dfrac{1}{6}xy\right).2x^3-3xy\left(-\dfrac{1}{6}xy\right)+12x\left(-\dfrac{1}{6}xy\right)\)
\(-\dfrac{1}{3}x^4y+\dfrac{1}{2}x^2y^2-2x^2y\)