K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2022

ctv olm có mặt ạ 

x2 + 2x + y2 - 6y + 10 =0

x2 + 2x + 1 + y2 - 6y + 9 = 0

(x +1)2 + (y-3)2 = 0

vì (x+1)2 ≥ 0 và (y-3)2 ≥0 nên (x+1)2+ (y-3)2 = 0

⇔ x + 1 = 0 và y -3 = 0

⇔ x = -1 và y = 3

22 tháng 7 2022

\(\Leftrightarrow x^2+2x+1+y^2-6y+9=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2=0\) (1)

\(\left(x+1\right)^2\ge0\forall x;\left(y-3\right)^2\ge0\forall y\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)

16 tháng 9 2016

\(x^2+2x+y^2-6y-10=0\)

\(x^2+2x+1+y^2-6x+9=10\)

\(\left(x+1\right)^2+\left(y-3\right)^2=0\)

\(\left(x+1\right)^2=\left(y-3\right)^2=0\)

\(x+1=y-3=0\)

Vậy \(x=-1;y=3\)

\(x^2\)\(+2x+y^2\)\(-6y-10=0\)

\(x^2\)\(+2x+1+y^2\)\(-6x+9=10\)

\(\left(x+1\right)^2\)+\(\left(y-3\right)^2\)\(=0\)

\(\left(x+1\right)^2\)\(=\left(y-3\right)^2\)\(=0\)

\(x+1=y-3=0\)

Vậy: \(x=-1;y=3\)

5 tháng 11 2021

\(x^2-4x+9y^2+6y+10\\ =\left(x^2-4x+4\right)+\left(9y^2+6y+1\right)+5\\ =\left(x-2\right)^2+\left(3y+1\right)^2+5\ge5>0\)

5 tháng 11 2021

Thank bạn!

 

6 tháng 8 2015

x^2+2x+y^2-6y+10=0

(x^2+2x+1)+(y^2-6y+9)=0

(x+1)^2+(y-3)^2=0

=>x+1=0; y-3=0

x=-1, y=3

16 tháng 10 2017

x=-1:y=3

-1 là âm 1 nha!^-^

14 tháng 3 2023

\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+6y-1}{5x}\left(1\right)\)

Từ `2` tỉ số đầu , ta áp dụng t/c của DTSBN , ta đc :

\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+3+3y-2}{3+6}=\dfrac{2x+3y+1}{9}\left(2\right)\)

Từ `(1);(2)=>`\(\dfrac{2x+6y-1}{5x}=\dfrac{2x+3y+1}{9}\left(3\right)\)

Từ `(3)` ta xét `2` trường hợp :

+, Nếu `2x+3y+1 \ne  0` thì :

`(3)=>5x=9=>x=9/5`

Thay `x=9/5` vào \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}\), ta đc :

\(\dfrac{2\cdot\dfrac{9}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{\dfrac{18}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{11}{5}=\dfrac{3y-2}{6}\\ 3y-2=6\cdot\dfrac{11}{5}\\ 3y-2=\dfrac{66}{5}\\ 3y=\dfrac{76}{5}\\ y=\dfrac{76}{16}\)

+, Nếu `2x+3y+1=0` thì :

`(1)=>` \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=0\\ \Rightarrow\left\{{}\begin{matrix}2x+3=0\\3y-2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)

3 tháng 8 2017

\(\Leftrightarrow x^2+2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)

vậy \(x=-1;y=-3\)

29 tháng 9 2018

làm cái này dài lắm nên mk sẽ làm riêng từng bài nha! 
\(1,a,\left(2x-3\right)^2-4\left(x+1\right)\left(x-1\right)=4x^2-12x+9-4\left(x^2-1\right)\)

                                                                            \(=4x^2-12x+9-4x^2+4\)

                                                                              \(=-12x+13\)

  \(b,x\left(x^2-2\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3-2x-\left(x^3-1\right)\)

                                                                                 \(=-2x+1\)

29 tháng 9 2018

1, rút gọn :

(2x-3)2-4(x+1)(x-1)

=(2x-3)-4(x2-1)

5 tháng 8 2019

Ta có: 2x + 3y + 5z - 119 = 0

=>  2x + 3y + 5z = 119

 \(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)

Vậy...

17 tháng 9 2016

3, A=(x-3)^2+(x-11)^2

\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)

\(\Rightarrow\)(X^2-9)+(X^2-121)

Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0

\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121

\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130

Dấu = xảy ra khi : X=0

Vậy : Min A = -130 khi x=0

Mình mới lớp 7 sai thì thôi nhé

27 tháng 6 2023

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

27 tháng 6 2023

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)