gia tri tuyet doi cua x+2 <5.tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x-2|+2|x-y|=0
Vì |x-2| \(\ge\) 0 với mọi x
2|x-y| \(\ge\) 0 với mọi x;y
=>|x-2|+2|x-y| \(\ge\) 0 với mọi x;y
Dấu "=" xảy ra
<=>|x-2|=2|x-y|=0
+)|x-2|=0<=>x=2
+)2|x-y|=0<=>x-y=0<=>x=y<=>y=2
Vậy.....................
a) \(\left|x\right|< 5.\) Mà GTTĐ của 1 số \(\ge0\)
\(\Rightarrow\left|x\right|\in\left\{0;1;2;3;4\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;\pm2;\pm3;\pm4\right\}\)
b) \(2\le\left|x\right|< 7\)
\(\Rightarrow\left|x\right|\in\left\{2;3;4;5;6;\right\}\)
\(\Rightarrow x\in\left\{\pm2;\pm3;\pm4;\pm5;\pm6\right\}\)
\(A=|x-2006|+|2007-x|\ge|x-2006+2007-x|=1\)
Dấu "=" xảy ra khi: \(\left(x-2006\right)\left(2007-x\right)\ge0\Rightarrow\left(x-2006\right)\left(x-2007\right)\le0\)
Mà \(x-2006>x-2007\Rightarrow\hept{\begin{cases}x-2006\ge0\\x-2007\le0\end{cases}\Rightarrow2006\le x\le2007}\)
Vậy GTNN của A là 1 khi \(2006\le x\le2007\)
Chúc bạn học tốt.
ta sử dung bất đẳng thức IaI+IbI lớn hơn hoặc bằng Ia+bI
dấu bằng xảy ra khi và chỉ khi tích ab lớn hơn hoặc bằng 0
áp dung vào ta có: Ix-2015I+Ix-2016I=Ix-2015I+I2016-xI \(\ge\) Ix-2015+2016-xI=I1I=1
dấu bằng xảy ra khi và chỉ khi (x-2015)(2016-x) lờn hơn hoặc bằng 0
hay \(2015\le x\le2016\)
vậy giá trị nhỏ nhất của biểu thức là 1. dấu bằng xảy ra khi và chỉ khi \(2015\le x\le2016\)
Vì giá trị tuyêt đối luôn lớn hơn -1
Suy ra:|x+2|=0,1,2,3,4
x+2=0;x=-2
x+2=1;x=-1
x+2=2;x=0
x+2=3;x=1
x+2=4;x=2