Tìm số tự nhiên n để \(3^{2n+3}\)+\(2^{4n+1}\) cho hết cho 25
**mấy bạn giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3^(2n+3)+2(4n+1)chia hết cho 25
có thể dùng pp như phần a để giải phần này
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a)
Pp lựa chọn phần dư:
A=3^(2n+3)+2^(4n+1)
gọi 3^(2n+3)=B,2^(4n+1)=C
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18
C=2^5=32 chia 25 dư 7
B+C chia 25 dư bằng 18+7chia 25 dư 0
giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k)
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250...
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k))
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25
:3
Trả lời
A=3^(2n+3)+2(4n+1)chia hết cho 25
có thể dùng pp như phần a để giải phần này
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a)
Pp lựa chọn phần dư:
A=3^(2n+3)+2^(4n+1)
gọi 3^(2n+3)=B,2^(4n+1)=C
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18
C=2^5=32 chia 25 dư 7
B+C chia 25 dư bằng 18+7chia 25 dư 0
giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k)
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250...
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k))
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25
a) Ta có : 4n + 3 = 2(2n - 1) +5
Do 2n - 1 \(⋮\)2n - 1 nên 2(2n - 1) \(⋮\)2n - 1
Để 4n + 3 \(⋮\)2n - 1 thì 5 \(⋮\)2n - 1 => 2n - 1 \(\in\)Ư(5) = {1; 5}
Lập bảng :
2n - 1 | 1 | 5 |
n | 1 | 3 |
Vậy n = {5; 3} thì 4n + 3 chia hết cho 2n - 1
c) Ta có : n + 3 = (n - 1) + 4
Để (n - 1) + 4 \(⋮\)n - 1 thì 4 \(⋮\)n - 1 => n - 1 \(\in\)Ư(4) = {1; 2; 4}
Lập bảng :
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy n = {2; 3; 5} thì n + 3 \(⋮\)n - 1
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
2n +1 chia hết cho 2n + 1
suy ra 2 ( 2n + 1 ) chia hết cho 2n + 1
= 4n + 2 chia hết cho 2n + 1
suy ra ; ( 4n + 3 ) - ( 4n + 2 ) chia hết cho 2n + 1
= 1 chia hết cho 2n + 1
=> 2n + 1 thuộc vào Ư( 1 ) = 1
=> n = 1
Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1
Giải:Ta có:4n+3=4n+2+1=2(2n+1)+1
Để 4n+3 chia hết cho 2n+1 thì 1 phải chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\).Vì n là số tự nhiên nên \(n\ge0\) nên 2n+1\(\ge1\)
Nên chỉ có 2n+1=1 thỏa mãn nên n=0 thỏa mãn