Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=3^{2n+3}+2^{4n+1}\)
\(=27.3^{2n}+2.2^{4n}\)
\(=25.3^{2n}+2.3^{2n}+2.2^{4n}\)
\(=25.3^{2n}+2\left(3^{2n}+2^{4n}\right)\)
\(=BS25+2\left(9^n+16^n\right)\)
\(\cdot\)Với n lẻ thì 9n+16n⋮25
\(\Rightarrow A⋮25\)
\(\cdot\)Với n chẵn thì 9ncó tận cùng bằng 1, 16n có tận cùng bằng 6 do đó A không chia hết cho 25 với n chẵn
Vậy với n lẻ thì \(3^{2n+3}+2^{4n+1}\) chia hết cho 25
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
Bài 1:
a: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
A=3^(2n+3)+2(4n+1)chia hết cho 25
có thể dùng pp như phần a để giải phần này
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a)
Pp lựa chọn phần dư:
A=3^(2n+3)+2^(4n+1)
gọi 3^(2n+3)=B,2^(4n+1)=C
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18
C=2^5=32 chia 25 dư 7
B+C chia 25 dư bằng 18+7chia 25 dư 0
giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k)
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250...
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k))
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25
:3
Trả lời
A=3^(2n+3)+2(4n+1)chia hết cho 25
có thể dùng pp như phần a để giải phần này
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a)
Pp lựa chọn phần dư:
A=3^(2n+3)+2^(4n+1)
gọi 3^(2n+3)=B,2^(4n+1)=C
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18
C=2^5=32 chia 25 dư 7
B+C chia 25 dư bằng 18+7chia 25 dư 0
giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k)
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250...
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k))
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25