K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2022

P = 2x3 + 3x2 + 4x + 5

với x = 4 ta có P = 2.43 + 3x42 + 4x4 + 5 = 128 + 48+16 + 5 =197

10 tháng 3 2017

Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)

B) Tính M(x) - N (x) - P(x)

ok rồi giúp mình với nha

1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự

1 tháng 6 2018

bn kiểm tra giúp mk đề 2 câu cuối , mk làm ko ra

12 tháng 7 2018

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

3 tháng 8 2020

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )

1: \(D=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

6: \(F=2\left(x^2+2x+\dfrac{3}{2}\right)=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)

\(=2\left(x+1\right)^2+1>0\)

7: \(=3\left(x^2-\dfrac{5}{3}x+1\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)

\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>0\)

8: \(=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)

9 tháng 8 2021

1, \(x^2+2x-3=x^2+3x-x-3=x\left(x-1\right)+3\left(x-1\right)=\left(x+3\right)\left(x-1\right)\)

2, \(x^2+3x-10=x^2+5x-2x-10=x\left(x-2\right)+5\left(x-2\right)=\left(x+5\right)\left(x-2\right)\)

3, \(x^2-x-12=x^2-4x+3x-12=x\left(x+3\right)-4\left(x+3\right)=\left(x-4\right)\left(x+3\right)\)

4, \(3x^2+4x-7=3x^2+7x-3x-7=3x\left(x-1\right)+7\left(x-1\right)=\left(3x+7\right)\left(x-1\right)\)

5, \(4x^2-9y^2-5xy=4x^2-9xy+4xy-9y^2\)

\(=4x\left(x+y\right)-9y\left(x+y\right)=\left(4x-9y\right)\left(x+y\right)\)

6, \(x^2-2x-4y^2-4y=x^2-2x+1-4y^2-4y-1=\left(x-1\right)^2-\left(2y+1\right)^2\)

\(=\left(x-1-2y-1\right)\left(x-1+2y+1\right)=\left(x-2y-2\right)\left(x+2y\right)\)

1 tháng 6 2018

Tìm x:

1. \(25x^2-20x+4=0\)

\(\left(5x-2\right)^2=0\)

\(5x-2=0\)

\(5x=2\)

\(x=\dfrac{2}{5}\)

⇒ S = \(\left\{\dfrac{2}{5}\right\}\)

2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)

\(4x^2-12x+9-\left(4x^2-1\right)=0\)

\(4x^2-12x+9-4x^2+1=0\)

\(-12x+10=0\)

\(-12x=-10\)

\(x=\dfrac{5}{6}\)

⇒ S \(=\left\{\dfrac{5}{6}\right\}\)

3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)

\(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)

\(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)

\(-2+x=0\)

\(x=2\)

⇒ S \(=\left\{2\right\}\)

4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)

\(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)

\(8x^2+8x+34=8x^2+16x+8\)

\(8x+34=16x+8\)

\(8x-16x=8-34\)

\(-8x=-26\)

\(x=\dfrac{13}{4}\)

⇒ S \(=\left\{\dfrac{13}{4}\right\}\)

5.\(4x^2+12x-7=0\)

\(4x^2+14x-2x-7=0\)

\(2x\left(2x+7\right)-\left(2x+7\right)=0\)

\(\left(2x+7\right)\left(2x-1\right)=0\)

\(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)

6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)

\(9x^2+24x-20=0\)

\(9x^2+30x-6x-20=0\)

\(3x\left(3x+10\right)-2\left(3x+10\right)=0\)

\(\left(3x+10\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)

1 tháng 6 2018

7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(896-9x^2-12x=0\)

\(-896+9x^2+12x=0\)

\(9x^2+12x-896=0\)

\(9x^2-84x+96x-896=0\)

\(3x\left(3x-28\right)+32\left(3x-28\right)=0\)

\(\left(3x-28\right)\left(3x+32\right)=0\)

\(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)