Cho phương trình \(log_2^2x-2log_2x-4\sqrt{1-log_2x}=m\) với m là số thực .Số các giá trị nguyên thuộc đoạn [-2019;2019] của m để phương trình đã cho có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\7^x\ge m\end{matrix}\right.\)
\(\left[{}\begin{matrix}4log_2^2x+log_2x-5=0\\7^x-m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=2^{-\dfrac{5}{4}}\\7^x=m\end{matrix}\right.\)
Với \(m\le0\) thì pt đã cho luôn có đúng 2 nghiệm
Vậy không cần xét tiếp, hiển nhiên là có vô số giá trị thực của m rồi?
- Đặt \(a=x^2-2x\left(a\ge-1\right)\)
PTTT \(3\sqrt{a+3}=a+m\left(a\ge-m\right)\)
\(\Leftrightarrow9\left(a+3\right)=\left(a+m\right)^2=a^2+2am+m^2=9a+27\)
\(\Leftrightarrow a^2+a\left(2m-9\right)+m^2-27=0\)
Có : \(\Delta=\left(2m-9\right)^2-4\left(m^2-27\right)=4m^2-36m+81-4m^2+108\)
\(=-36m+189\)
- Để phương trình đề có 2 nghiệm phân biệt :
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(a_1+1\right)\left(a_2+1\right)>0\\a_1+1+a_2+1>0\end{matrix}\right.\)
Lại có : Theo vi ét : \(\left\{{}\begin{matrix}a_1+a_2=-2m+9\\a_1a_2=m^2-27\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\a_1a_2+a_1+a_2+1>0\\a_1+a_2+2>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-36m+189>0\\m^2-27-2m+9+1=m^2-2m-17>0\\-2m+9+2=-2m+11>0\end{matrix}\right.\)
\(\Rightarrow m=\left(-\infty;1-3\sqrt{2}\right)\cup\left(1+3\sqrt{2};\dfrac{21}{4}\right)\) ( * )
- Có : \(x^2-2x=a\)
- Đặt \(f\left(x\right)=x^2-2x\)
- Ta có đồ thị \(x^2-2x=0\)
- Từ độ thị hàm số : Để phương trình \(x^2-2x=a\) có 2 nghiệm phân biệt trong đoạn 0, 3 thì \(a=(-1;0]\)
Lại có : \(a=[-m;+\infty)\)
\(\Rightarrow-m\le0\)
\(\Rightarrow m\ge0\)
- Kết hợp với ( * )
\(\Rightarrow m\in\left(1+3\sqrt{2};\dfrac{21}{4}\right)\)
Vậy ...
ĐKXĐ: \(-x^2+4x+m>0\)
\(log_2\left(-x^2+4x+m\right)-log_2\left(x^2+2\right)< log_23\)
\(\Leftrightarrow log_2\left(\dfrac{-x^2+4x+m}{x^2+2}\right)< log_23\)
\(\Leftrightarrow\dfrac{-x^2+4x+m}{x^2+2}< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+4x+m>0\\-x^2+4x+m< 3x^2+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>x^2-4x\\m< 4x^2-4x+6\end{matrix}\right.\) ; \(\forall x\in\left[1;5\right]\)
Xét hai hàm \(\left\{{}\begin{matrix}f\left(x\right)=x^2-4x\\g\left(x\right)=4x^2-4x+6\end{matrix}\right.\) trên \(\left[1;5\right]\) ta được: \(\left\{{}\begin{matrix}f\left(x\right)_{max}=f\left(5\right)=5\\g\left(x\right)_{min}=g\left(1\right)=6\end{matrix}\right.\)
\(\Rightarrow5\le m\le6\)
Có 2 giá trị nguyên của m
\(\sqrt{2x^2-8x+m}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-8x+m=\left(x-1\right)^2\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+m-1=0\\x\ge1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(x^2-6x+m-1=0\left(1\right)\) có nghiệm duy nhất thỏa mãn \(x\ge1\)
\(\left(1\right)\Leftrightarrow m=f\left(x\right)=-x^2+6x+1\)
Đồ thi hàm số \(y=f\left(x\right)=-x^2+6x+1\):
Dựa vào đồ thị ta được \(m=10\)
P/s: Cái này t lười vẽ bảng biến thiên nên vẽ đồ thị đó, chứ bình thường viết trong vở thì dùng bảng biến thiên nhanh hơn nhiều.
ĐKXĐ: \(0< x\le2\)
\(log_2x-2log_2x-4\sqrt{1-log_2x}=m\)
\(\Leftrightarrow\left(1-log_2x\right)^2-4\sqrt{1-log_2x}-1=m\)
Đặt \(\sqrt{1-log_2x}=t\ge0\)
\(\Rightarrow t^4-4t-1=m\)
Xét hàm \(f\left(t\right)=t^4-4t-1\) có \(f'\left(t\right)=4t^3-4=0\Rightarrow t=1\)
BBT:
Từ đó ta thấy \(f\left(t\right)=m\) có nghiệm khi \(m\ge-4\)
\(\Rightarrow\) Có 2024 giá trị nguyên của m thỏa mãn