K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 12 2018

\(log\left(5\left(x^2+1\right)\right)\ge log\left(mx^2+4x+m\right)\)

- BPT đúng \(\forall x\Rightarrow log\left(mx^2+4x+m\right)\) xác định \(\forall x\in R\)

\(\Rightarrow mx^2+4x+m>0\) \(\forall x\in R\)

\(\Rightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=4-m^2< 0\end{matrix}\right.\) \(\Rightarrow m>2\) (1)

- Lại có \(x^2+1\ge1\) \(\forall x\)

\(\Rightarrow5\left(x^2+1\right)\ge mx^2+4x+m\)

\(\Leftrightarrow5\left(x^2+1\right)-4x\ge m\left(x^2+1\right)\)

\(\Leftrightarrow5-\dfrac{4x}{x^2+1}\ge m\)

Đặt \(f\left(x\right)=5-\dfrac{4x}{x^2+1}\Rightarrow f\left(x\right)\ge m\) \(\forall x\Leftrightarrow m\le min\left(f\left(x\right)\right)\)

Ta có \(f\left(x\right)=3+2-\dfrac{4x}{x^2+1}=3+\dfrac{2\left(x-1\right)^2}{x^2+1}\ge3\)

\(\Rightarrow min\left(f\left(x\right)\right)=3\Rightarrow m\le3\) (2)

Kết hợp (1), (2) \(\Rightarrow2< m\le3\Rightarrow m=3\)

Vậy có 1 giá trị nguyên duy nhất của m để BPT đúng với mọi x

Đáp án B

NV
11 tháng 6 2019

Câu 1:

\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)

Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)

\(\Rightarrow a^2+a-5=m\) (1)

Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)

\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương

Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương

Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)

Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)

\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)

\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)

\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)

NV
11 tháng 6 2019

Câu 2:

\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)

Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)

\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)

\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)

Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)

\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)

\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)

\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)

\(\Rightarrow m\ge-\frac{3}{7}\)

NV
29 tháng 6 2019

ĐKXĐ: \(x>0\)

\(\Leftrightarrow\left[{}\begin{matrix}2log_3^2x-log_3x-1=0\\5^x=m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}log_3x=1\\log_3x=-\frac{1}{2}\end{matrix}\right.\\5^x=m\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\\5^x=m\end{matrix}\right.\)

Xét pt \(5^x=m\)

- Nếu \(m>5^3=125\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\) ko phải nghiệm của pt đã cho \(\Rightarrow\) phương trình có đúng 1 nghiệm

- Nếu \(m=5^3\Rightarrow\) pt có đúng 1 nghiệm \(x=3\)

- Nếu \(1< m< 5^{\frac{1}{\sqrt{3}}}\) phương trình có 3 nghiệm \(\left\{{}\begin{matrix}x=1\\x=\frac{1}{\sqrt{3}}\\x=log_5m\end{matrix}\right.\)

- Nếu \(5^{\frac{1}{\sqrt{3}}}< m< 5^3\) phương trình có 2 nghiệm: \(\left[{}\begin{matrix}x=3\\x=log_5m\end{matrix}\right.\)

- Nếu \(m=1\Rightarrow\) pt có 2 nghiệm \(\left[{}\begin{matrix}x=3\\x=\frac{1}{\sqrt{3}}\end{matrix}\right.\)

Vậy để pt có 2 nghiệm pb thì: \(\left[{}\begin{matrix}m=1\\5^{\frac{1}{\sqrt{3}}}< m< 5^3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\3\le m\le124\end{matrix}\right.\) \(\Rightarrow\)\(123\) giá trị m thỏa mãn

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 1:

\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)

Gọi hoành độ của M là \(x_M\)

Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:

\(f'(x_M)=3x_M^2-6x_M=9\)

\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$

\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)

Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)

Đáp án B

Câu 2:

Gọi hoành độ tiếp điểm là $x_0$

Hệ số góc của tiếp tuyến tại tiếp điểm là:

\(f'(x_0)=x_0^2-4x_0+3\)

Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)

\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)

Khi đó: PTTT là:

\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )

Do đó \(y=3x+4\Rightarrow \) đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Câu 3:

PT hoành độ giao điểm:

\(\frac{2x+1}{x-1}-(-x+m)=0\)

\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)

Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)

\(\Leftrightarrow m^2-6m-3> 0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)

Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)

Có 3 giá trị m thỏa mãn.

NV
21 tháng 7 2020

Đặt \(log_2\left(\frac{8x-2^x-12m}{3}\right)=t\)

\(\Rightarrow8x-2^x-12m=3.2^t\)

Ta được hệ: \(\left\{{}\begin{matrix}3t-2^x-x=3m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12t-4.2^x-4x=12m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)

\(\Rightarrow12t-3.2^x-12x+3.2^t=0\)

\(\Leftrightarrow3.2^t+12t=3.2^x+12x\)

Hàm \(f\left(a\right)=3.2^a+12a\) đồng biến trên R nên đẳng thức xảy ra khi và chỉ khi \(x=t\)

\(\Rightarrow3x-2^x-x=3m\)

\(\Leftrightarrow2x-2^x=3m\)

Khảo sát hàm \(f\left(x\right)=2x-2^x\Rightarrow f'\left(x\right)=2-2^x.ln2=0\)

\(\Rightarrow2^x=\frac{2}{ln2}\Rightarrow x=log_2\left(\frac{2}{ln2}\right)=1-log_2\left(ln2\right)\)

Từ BBT ta thấy để pt có đúng 2 nghiệm thực pb

\(\Leftrightarrow3m< f\left(1-log_2\left(ln2\right)\right)\Rightarrow m\le0\) do m nguyên

Có 20 giá trị nguyên của m

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

NV
1 tháng 8 2020

Đặt \(log_5\left(x+5\right)=a\Rightarrow x+5=5^a\)

\(\Rightarrow a^2-\left(m+6\right)log_25^a+m^2+9=0\)

\(\Leftrightarrow a^2-a\left(m+6\right)log_25+m^2+9=0\)

\(\Delta=\left(m+6\right)^2.log^2_25-4\left(m^2+9\right)\ge0\)

\(\Leftrightarrow\left(log^2_25-4\right)m^2+\left(12log_2^25\right).m+36\left(log_2^25-1\right)\ge0\)

Bấm máy BPT trên và lấy số nguyên gần nhất ta được \(m\ge-2\Rightarrow\)\(20+2+1=23\) giá trị nguyên của m

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

28 tháng 8 2021

hacker