K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2022

\(10+x^2+6x\)

\(=x^2+6x+10\)

\(=x^2+2x.3+3^2+1\)

\(=\left(x+3\right)^2+1>0\) ( đfcm )

9 tháng 7 2022

10 + x2 + 6x = x2 + 2.x .3 + 32 + 1 = (x+3)2 + 1 

(x+3)2 ≥ 0 ∀ x ϵ R ⇔ (x+3)2 + 1 ≥ 1 >0 ∀ x ϵ R

⇔ 10 + x2 + 6x > 0 ∀ x ϵ R (đpcm)

26 tháng 9 2018

Có: x^2-4x+10=x^2-2*x*2+2^2+6=(x-2)^2+6

(x-2)^2>=0 với mọi x

=> (x-2)^2+6>0 với mọi x

=> x^2-4x+10>0 với mọi x

26 tháng 9 2018

Ta phân tích \(6x\) thành \(2.3x\) và \(10\) thành \(9+1\)

Ta có: 

\(\Leftrightarrow x^2-2.3x+3.3+1\)

Áp dụng hằng đẳng thức thứ 2, ta có:

\(\Leftrightarrow\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\) luôn \(>0\Rightarrow\left(x-3\right)^2+1>0\) mọi \(x\in R\)

17 tháng 9 2019

\(6x-x^2-10\)

\(=-\left(x^2-6x+10\right)\)

\(=-\left(x^2-2.x.3+3^2+1\right)\)

\(=-\left[\left(x-3\right)^2+1\right]\le-1;\forall x\)

\(\Rightarrowđpcm\)

7 tháng 10 2016

\(4y^2+2x^2+4xy-6x+10\)

\(=4y^2+4xy+x^2+x^2-6x+9+1\)

\(=\left(2y+x\right)^2+\left(x-3\right)^2+1\)

Vì: \(\hept{\begin{cases}\left(2y+x\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(2y+x\right)^2+\left(x-3\right)^2+1>0\)

7 tháng 10 2016

Vậy:...

Ta có: \(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)

hay \(x^2-6x+10>0\forall x\)

15 tháng 8 2018

a) Ta có :  \(x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1>0\forall x\)

b) Ta có :  \(4x-x^2-5\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

Vậy ...

6 tháng 12 2021

Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)

Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

3 tháng 9 2016

(x-3)2 +y2 +1 >0

với mọi x;y

3 tháng 9 2016

x2 - 6x + 10 + y2

= x2 - 6x + 9 + 1 + y2

= x2 - 2.x.3 + 32 + 1 + y2

= (x - 3)2 + 1 + y2

Ta có: (x - 3)+ 1 \(\ge\)1 và y2 \(\ge\)0

=> (x - 3)2 + 1 + y2 \(\ge\)1 > 0 với mọi x, y (đpcm).