K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2022

\(10+x^2+6x\)

\(=x^2+6x+10\)

\(=x^2+2x.3+3^2+1\)

\(=\left(x+3\right)^2+1>0\) ( đfcm )

9 tháng 7 2022

10 + x2 + 6x = x2 + 2.x .3 + 32 + 1 = (x+3)2 + 1 

(x+3)2 ≥ 0 ∀ x ϵ R ⇔ (x+3)2 + 1 ≥ 1 >0 ∀ x ϵ R

⇔ 10 + x2 + 6x > 0 ∀ x ϵ R (đpcm)

17 tháng 9 2019

\(6x-x^2-10\)

\(=-\left(x^2-6x+10\right)\)

\(=-\left(x^2-2.x.3+3^2+1\right)\)

\(=-\left[\left(x-3\right)^2+1\right]\le-1;\forall x\)

\(\Rightarrowđpcm\)

26 tháng 9 2018

Có: x^2-4x+10=x^2-2*x*2+2^2+6=(x-2)^2+6

(x-2)^2>=0 với mọi x

=> (x-2)^2+6>0 với mọi x

=> x^2-4x+10>0 với mọi x

26 tháng 9 2018

Ta phân tích \(6x\) thành \(2.3x\) và \(10\) thành \(9+1\)

Ta có: 

\(\Leftrightarrow x^2-2.3x+3.3+1\)

Áp dụng hằng đẳng thức thứ 2, ta có:

\(\Leftrightarrow\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\) luôn \(>0\Rightarrow\left(x-3\right)^2+1>0\) mọi \(x\in R\)

7 tháng 10 2021

Đề mik ko hiểu lắm

\(2x\left(x-4\right)-6x^2\left(4-x\right)=0\)

\(\Leftrightarrow6x^2\left(x-4\right)+2x\left(x-4\right)=0\)

\(\Leftrightarrow2x\left(x-4\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-\dfrac{1}{3}\end{matrix}\right.\)

24 tháng 9 2020

M = ( x + 4 )( x - 4 ) - 2x( 3 + x ) + ( x + 3 )2

= x2 - 16 - 6x - 2x2 + x2 + 6x + 9

= -7 ( đpcm )

N = ( x2 + 4 )( x + 2 )( x - 2 ) - ( x2 + 3 )( x2 - 3 )

= ( x2 + 4 )( x2 - 4 ) - ( x4 - 9 )

= x4 - 16 - x4 + 9

= -7 ( đpcm )

P = ( 3x - 2 )( 9x2 + 6x + 4 ) - 3( 9x3 - 2 )

= 27x3 - 8 - 27x3 + 6

= -2 ( đpcm )

Q = ( 3x + 2 )2 + ( 6x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 12x + 4 + 12x - 18x2 + 20 - 30x + 4 - 12x + 9x2

= -18x + 28 ( có phụ thuộc vào biến )

(x+1)(6x2+2x)+(x-1)(6x2+2x)
<=> (6x2+2x)(x+1+x-1)
<=> 2x(3x+1)2x
<=> 4x2(3x+1)
<=> x2=0
       3x+1=0
<=> x=0
       x= -1/3 (-1 phần 3)

15 tháng 12 2019

\(4x^2-4x+3\)

\(=\left(4x^2-4x+1\right)+2\)

\(=\left(2x+1\right)^2+2>0\)với mọi x

vậy \(4x^2-4x+3>0\)với mọi x

15 tháng 12 2019

\(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\)

Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow4x^2-4x+3\ge2\forall x\)

hay \(4x^2-4x+3>0\forall x\)

27 tháng 10 2021

\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)

\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)

\(=\left(x^2+10x+20\right)^2\)

7 tháng 10 2016

\(4y^2+2x^2+4xy-6x+10\)

\(=4y^2+4xy+x^2+x^2-6x+9+1\)

\(=\left(2y+x\right)^2+\left(x-3\right)^2+1\)

Vì: \(\hept{\begin{cases}\left(2y+x\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(2y+x\right)^2+\left(x-3\right)^2+1>0\)

7 tháng 10 2016

Vậy:...

15 tháng 7 2017

a,=(x\(^2\)-6x+9)+10-9

=(x-3)\(^2\)+1

Mà(x-3)\(^2\)\(\ge\)0

nên (x-3)\(^2\)+1>0

b,=  -(-4x+x\(^2\))-5

=    -(4-4x+x\(^2\))-5+4

=     -(2-x)\(^2\)-1

Mà  -(2-x)\(^2\)\(\le\)0

nên -(2-x)\(^2\)-1<   0

16 tháng 7 2017

Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :)  Thankssssss