K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2015

\((x + \sqrt{x^2+2015}).(y + \sqrt{y^2+2015})=2015 . chứng minh {x^2015}+y^2015} = 0\)

là sao

22 tháng 8 2016

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

23 tháng 8 2019

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}\)

<=> \(\frac{x+y}{xy}=\frac{1}{2015}=>xy=2015\left(x+y\right)\)

Có P2=\(\frac{x+y}{x-2015+y-2015+2\sqrt{xy-2015\left(x+y\right)+2015^2}}\) =\(\frac{x+y}{\left(x+y\right)-4030+2\sqrt{xy-xy+2015^2}}\)( vì 2015(x+y)=xy)

= \(\frac{x+y}{x+y-4030+2\sqrt{2015^2}}=\frac{x+y}{x+y-4030+2.2015}=\frac{x+y}{x+y}\)=1

=> P=1(vì P>0)

7 tháng 10 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)

\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)

\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x = -y hoặc y = -z hoặc z = -x

Không mất tổng quát giả sử x = -y, khi đó:

\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)

\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)

\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)

30 tháng 3 2015

ai giups tui di

 

7 tháng 11 2018

cái nào có dạng giống nhau chuyển về 1 nhóm rồi nhân lien hợp
GL!

13 tháng 2 2020

Từ giả thuyết ta đc x+y=0 thì =>x^2015+y^2015=(x+y)(...)=0

cái đoạn x+y=0 bạn xem mấy bài đăng khác ấy!:>>

17 tháng 4 2020

Nhân cả 2 vế của đẳng thức đã cho với \(\left(x-\sqrt{x^2+\sqrt{2015}}\right)\)ta được:

\(-\sqrt{2015}\left(y+\sqrt{y^2+\sqrt{2015}}\right)=\sqrt{2015}\left(x-\sqrt{x^2+\sqrt{2015}}\right)\)(1)

Nhân cả 2 vế của đẳng thức đã cho với \(\left(y-\sqrt{y^2+\sqrt{2015}}\right)\)ta được:

\(-\sqrt{2015}\left(x+\sqrt{x^2+\sqrt{2015}}\right)=\sqrt{2015}\left(y-\sqrt{y^2+\sqrt{2015}}\right)\)(2)

Lấy (1) + (2), ta được:

\(-\sqrt{2015}\left(y+\sqrt{y^2+\sqrt{2015}}+x+\sqrt{x^2+\sqrt{2015}}\right)\)

\(=\sqrt{2015}\left(x+y-\sqrt{x^2+\sqrt{2015}}-\sqrt{y^2+\sqrt{2015}}\right)\)

\(\Leftrightarrow x+y+\sqrt{x^2+\sqrt{2015}}+\sqrt{y^2+\sqrt{2015}}\)

\(=-x-y+\sqrt{x^2+\sqrt{2015}}+\sqrt{y^2+\sqrt{2015}}\)

\(\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

Vậy x + y = 0