So sánh a) \(\dfrac{257}{256}và\dfrac{774}{763}\)
b)\(\dfrac{257}{256}và\dfrac{774}{773}\) c) \(\dfrac{573}{484}và\dfrac{774}{773}\)
(giải thích) giúp mk vs ạ mik đng rất cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{x+2}-\dfrac{x-1}{x-2}=\dfrac{12}{x^2-4}+1\left(x\ne-2;x\ne2\right)\)
\(< =>\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
suy ra
`5x-10-(x^2 +2x-x-2)=12+x^2 -4`
`<=>5x-10-x^2 -2x+x+2-12-x^2 +4=0`
`<=>-x^2 -x^2 +5x-2x+x-10+2+4=0`
`<=>-x^2 +4x-4=0`
`<=>x^2 -4x+4=0`
`<=>(x-2)^2 =0`
`<=>x-2=0`
`<=>x=2(ktmđk)`
vậy phương trình vô nghiệm
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow5\left(x-2\right)-\left(x-1\right)\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x-10-\left(x^2+x-2\right)=12+x^2-4\)
\(\Leftrightarrow-x^2+4x-8=x^2+8\)
\(\Leftrightarrow2x^2-4x+16=0\)
\(\Leftrightarrow2\left(x-1\right)^2+14=0\)
Do \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\\14>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow2\left(x-1\right)^2+14>0\)
Vậy phương trình đã cho vô nghiệm
a) \(\dfrac{23}{24}< 1\)
\(\dfrac{24}{23}>1\)
\(\Rightarrow\dfrac{23}{24}< \dfrac{24}{23}\)
b) \(\dfrac{4}{21}< \dfrac{4}{20}=\dfrac{1}{5}=\dfrac{6}{30}< \dfrac{6}{29}\)
c) \(\dfrac{6}{7}=1-\dfrac{1}{7}< \dfrac{8}{9}=1-\dfrac{1}{9}\)
d) \(\dfrac{1212}{1313}=\dfrac{12\times101}{13\times101}=\dfrac{12}{13}\)
Bài 1:
1: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà \(17^{19}+1>17^{18}+1\)
nên 17A>17B
hay A>B
2: \(C=\dfrac{98^{99}+98^{10}+1-98^{10}}{98^{89}+1}=98^{10}+\dfrac{1-98^{10}}{98^{89}+1}\)
\(D=\dfrac{98^{98}+98^{10}+1-98^{10}}{98^{88}+1}=98^{10}+\dfrac{1-98^{10}}{98^{88}+1}\)
mà \(98^{89}+1>98^{88}+1\)
nên C>D
\(1+\dfrac{1}{2}.\dfrac{3.2}{2}+\dfrac{1}{3}.\dfrac{4.3}{2}+...+\dfrac{1}{500}.\dfrac{501.500}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{501}{2}\)
\(=\dfrac{2+3+4+...+501}{2}\)
\(=\dfrac{\left(501-2+1\right).\left(501+2\right)}{4}\)
\(=\dfrac{\left(501-2+1\right).\left(501+2\right)}{4}=62875\)
Lời giải:
a. $\frac{3}{-7}=\frac{-27}{63}$
$\frac{-5}{9}=\frac{-35}{63}$
Do $\frac{27}{63}< \frac{35}{63}$ nên $\frac{-27}{63}> \frac{-35}{63}$
$\Rightarrow \frac{3}{-7}> \frac{-5}{9}$
---------
b.
$-0,625=\frac{-625}{1000}=\frac{-5}{8}=\frac{-125}{200}$
$\frac{-19}{50}=\frac{-76}{200}> \frac{-125}{200}$
$\Rightarrow -0,625> \frac{-19}{50}$
c.
$-2\frac{5}{9}=-(2+\frac{5}{9})=\frac{-23}{9}=-(\frac{-23}{-9})$
M = 1/4 + 1/16 + 1/64 + 1/256 + 1/1024
4.M = 1 + 1/4 + 1/16 + 1/64 + 1/256
4M - M = (1 + 1/4 + 1/16 + 1/64 + 1/256 ) - ( 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 )
3M = 1 - 1/1024
3M = 1023/1024
M = 341/1024
M=\(\dfrac{1}{4}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{256}\)+\(\dfrac{1}{1024}\)
=\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)+\(\dfrac{1}{4^5}\)
=>4M=1+\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)
=>4M-M=3M=(1+\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\))-(\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)+\(\dfrac{1}{4^5}\))=1-\(\dfrac{1}{4^5}\)=\(\dfrac{1023}{1024}\)
=>M=\(\dfrac{1023}{1024}\):3=\(\dfrac{341}{1024}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{18}{9}=2\)
Do đó: x=8; y=10
\(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(đk:a>0,a\ne1\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+2}=\dfrac{1}{\sqrt{a}}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}}\)
Để A nguyên
\(\Leftrightarrow A=\dfrac{\sqrt{a}-2}{\sqrt{a}}=1-\dfrac{2}{\sqrt{a}}\in Z\)
Do \(\sqrt{a}>0,\sqrt{a}\ne1\)
\(\Leftrightarrow\sqrt{a}\inƯ\left(2\right)=\left\{2\right\}\)
\(\Leftrightarrow a=4\)
\(\dfrac{774}{763}\) > \(\dfrac{774}{768}\) = \(\dfrac{129}{128}\) = 1 + \(\dfrac{1}{128}\) > 1 + \(\dfrac{1}{256}\) = \(\dfrac{257}{256}\)
vậy \(\dfrac{774}{763}\) > \(\dfrac{257}{256}\)
b, \(\dfrac{257}{256}\) = 1 + \(\dfrac{1}{256}\) > 1 + \(\dfrac{1}{773}\) = \(\dfrac{774}{773}\)
vậy \(\dfrac{257}{256}\) > \(\dfrac{774}{773}\)