\(\dfrac{3}{20}:50=\dfrac{a}{\dfrac{b}{c}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu c) mang tính mua vui hay gì hả bn
mếu thật thì x=0,x=số nào cx đc(câu trả lời này mang tính mua vui thôi nhé)
a) \(\dfrac{36}{42}\) = \(\dfrac{18}{21}\) = \(\dfrac{6}{7}\) = \(\dfrac{30}{35}\)
b) \(\dfrac{80}{100}\) =\(\dfrac{16}{20}\) = \(\dfrac{4}{5}\) = \(\dfrac{40}{50}\)
\(\dfrac{x-1}{50}+\dfrac{x-2}{49}=\dfrac{x-3}{48}+\dfrac{x-4}{47}\)
\(\Rightarrow\dfrac{x-1}{50}-1+\dfrac{x-2}{49}-1=\dfrac{x-3}{48}-1+\dfrac{x-4}{47}-1\)
\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}=\dfrac{x-51}{48}+\dfrac{x-51}{47}\)
\(\Rightarrow\dfrac{x-51}{50}+\dfrac{x-51}{49}-\dfrac{x-51}{48}-\dfrac{x-51}{47}=0\)
\(\Rightarrow\left(x-51\right)\left(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\right)=0\)
Vì \(\dfrac{1}{50}+\dfrac{1}{49}-\dfrac{1}{48}-\dfrac{1}{47}\ne0\) nên \(x-51=0\Rightarrow x=51\)
\(\dfrac{x+25}{6}+\dfrac{x+20}{11}+\dfrac{x+16}{15}+3=0\)
\(\Rightarrow\dfrac{x+25}{6}+1+\dfrac{x+20}{11}+1+\dfrac{x+16}{15}+1=0\)
\(\Rightarrow\dfrac{x+31}{6}+\dfrac{x+31}{11}+\dfrac{x+31}{15}=0\)
\(\Rightarrow\left(x+31\right)\left(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\right)=0\)
Vì \(\dfrac{1}{6}+\dfrac{1}{11}+\dfrac{1}{15}\ne0\) nên \(x+31=0\Rightarrow x=-31\)
\(\dfrac{x-15}{6}+\dfrac{x-10}{11}=\dfrac{x-3}{18}+\dfrac{x-7}{14}\)
\(\Rightarrow\dfrac{x-15}{6}-1+\dfrac{x-10}{11}-1=\dfrac{x-3}{18}-1+\dfrac{x-7}{14}-1\)
\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}=\dfrac{x-21}{18}+\dfrac{x-21}{14}\)
\(\Rightarrow\dfrac{x-21}{6}+\dfrac{x-21}{11}-\dfrac{x-21}{18}-\dfrac{x-21}{14}=0\)
\(\Rightarrow\left(x-21\right)\left(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\right)=0\)
Vì \(\dfrac{1}{6}+\dfrac{1}{11}-\dfrac{1}{18}-\dfrac{1}{14}\ne0\) nên \(x-21=0\Rightarrow x=21\)
\(\text{a) }\left|2-5x\right|=\left|3x+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}2-5x=3x+1\\2-5x=-3x-1\end{matrix}\right. \Leftrightarrow\left[{}\begin{matrix}-5x-3x=1-2\\-5x+3x=-1-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-1\\-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{8}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình là \(S=\left\{\dfrac{1}{8};\dfrac{3}{2}\right\}\)
\(\text{b) }\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)
ĐXKĐ của phương trình \(:x\ne\pm5\)
\(\text{Ta có }:\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\\ \Rightarrow\dfrac{3}{4\left(x-5\right)}+\dfrac{15}{2\left(25-x^2\right)}+\dfrac{7}{6\left(x+5\right)}=0\\ \Rightarrow\dfrac{3}{4\left(x-5\right)}-\dfrac{15}{2\left(x+5\right)\left(x-5\right)}+\dfrac{7}{6\left(x+5\right)}=0\\ \Rightarrow\dfrac{9\left(x+5\right)}{12\left(x+5\right)\left(x-5\right)}-\dfrac{90}{12\left(x+5\right)\left(x-5\right)}+\dfrac{14\left(x-5\right)}{12\left(x+5\right)\left(x-5\right)}=0\\ \Rightarrow9x+45-90+14x-70=0\\ \Leftrightarrow23x=115\\ \Leftrightarrow x=5\left(KTM\right)\)
Vậy phương trình vô nghiệm
\(\text{c) }\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\\ \Leftrightarrow\left(\dfrac{x+29}{31}+1\right)-\left(\dfrac{x+27}{33}+1\right)=\left(\dfrac{x+17}{43}+1\right)-\left(\dfrac{x+15}{45}+1\right)\\ \Leftrightarrow\dfrac{x+60}{31}-\dfrac{x+60}{33}-\dfrac{x+60}{43}+\dfrac{x+60}{45}=0\\ \Leftrightarrow\left(x+60\right)\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\right)=0\\ \Leftrightarrow x+60=0\left(\text{Vì }\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\ne0\right)\\ \Leftrightarrow x=-60\)
Vậy \(x=-60\) là nghiệm của phương trình
a: Ta có: \(\left(4\sqrt{2}-\dfrac{11}{2}\sqrt{8}-\dfrac{1}{3}\sqrt{288}+\sqrt{50}\right)\cdot\left(\dfrac{1}{2}\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot\left(4\sqrt{2}-11\sqrt{2}-4\sqrt{2}+5\sqrt{2}\right)\)
\(=\dfrac{1}{2}\sqrt{2}\cdot6\sqrt{2}=3\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{a}{3}=\dfrac{b}{8}=\dfrac{c}{5}=\dfrac{2a+3b-c}{6+24-5}=\dfrac{50}{25}=2\)
➩a=2.3=6
b=2.8=16
c=2.5=10
Vậy; a=6; b=16; c=10
a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)
\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)
\(=11\sqrt{2}\)
b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)
\(=5\sqrt{5}-1\)
a: \(\Leftrightarrow x^2=900\)
=>x=30 hoặc x=-30
b: \(\Leftrightarrow\dfrac{2}{3}:\left(-0.1x\right)=\dfrac{4}{3}:\dfrac{-2}{25}=-\dfrac{4}{3}\cdot\dfrac{25}{2}=-\dfrac{100}{6}=\dfrac{-50}{3}\)
=>0,1x=2/3:50/3=2/3x3/50=1/25
=>1/10x=1/25
hay x=1/25:1/10=10/25=2/5
d: \(\Leftrightarrow x^2=\dfrac{144}{25}\)
=>x=12/5 hoặc x=-12/5
\(\dfrac{3}{20}:50=\dfrac{3}{20x50}=\dfrac{3}{1000}=0.003\)
Đáp án ở dưới sai rồi.