K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

tu Dk dau bai => y>0

\(y=\frac{x+1}{x-x^2}\)

yx^2-(y-1)x+1

delta(x)=(y-1)^2-4y=y^2-6y+1>=0

delta(y)=9-1=8

\(y1,2=3+-2\sqrt{2}\)

dieu kien can \(3-2\sqrt{2}\le0=>y\ge3+2\sqrt{2}\) 

dieu kien du 0<(y-1)/y<1 hien nhien dung

Min y=3+2.can(2) 

khi x=\(\frac{3+2\sqrt{2}-1}{2\left(3+2\sqrt{2}\right)}=\frac{1+\sqrt{2}}{3+2\sqrt{2}}\)

23 tháng 11 2016

Nhóm hợp lí và áp dụng BĐT Bunhiacopxki , ta có

\(Y=\frac{2}{1-x}+\frac{1}{x}=\left(\frac{2}{1-x}+\frac{1}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\frac{2}{1-x}.\left(1-x\right)}+\sqrt{\frac{1}{x}.x}\right)^2\)

\(\Leftrightarrow Y\ge\left(\sqrt{2}+1\right)^2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{2}{\left(1-x\right)^2}=\frac{1}{x^2}\\0< x< 1\end{cases}}\Leftrightarrow x=\sqrt{2}-1\)

Vậy min Y = \(\left(\sqrt{2}+1\right)^2\) khi \(x=\sqrt{2}-1\)

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

24 tháng 11 2016

Đặt \(Z=\frac{2x}{1-x}+\frac{1-x}{x}\)

Áp dụng bđt Cô si với 2 số dương là \(\frac{2x}{1-x}\)\(\frac{1-x}{x}\) ta có:

\(Z=\frac{2x}{1-x}+\frac{1-x}{x}\ge2.\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}=2.\sqrt{2}\)

Dấu "=" xảy ra khi \(\frac{2x}{1-x}=\frac{1-x}{x}\)

<=> 2x2 = (1 - x)2 <=> \(\sqrt{2x^2}=\sqrt{\left(1-x\right)^2}\Leftrightarrow\left|x.\sqrt{2}\right|=\left|1-x\right|\)

Mà theo đề bài 0 < x < 1 nên \(\begin{cases}x.\sqrt{2}>0\\1-x>0\end{cases}\)\(\Rightarrow\begin{cases}\left|x.\sqrt{2}\right|=x.\sqrt{2}\\\left|1-x\right|=1-x\end{cases}\)

Do đó, \(x.\sqrt{2}=1-x\Leftrightarrow x.\sqrt{2}+x=1\Leftrightarrow x.\left(\sqrt{2}+1\right)=1\)

\(\Leftrightarrow x=\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1\)

Xét hiệu: \(y-Z=\left(\frac{2}{1-x}+\frac{1}{x}\right)-\left(\frac{2x}{1-x}+\frac{1-x}{x}\right)=\frac{2-2x}{1-x}+\frac{1-1+x}{x}=2+1=3\)

\(\Leftrightarrow y=Z+3=2.\sqrt{2}+3\)

Vậy Min y = \(2.\sqrt{2}+3\) khi \(x=\sqrt{2}-1\)

 

 

24 tháng 11 2016

soyeon_Tiểubàng giải, bạn học lớp 7 mà giải được toán lớp 9 luôn á?

13 tháng 7 2020

Sử dụng AM - GM dạng cộng mẫu :

\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\)

\(\ge\frac{\left(1+2+3\right)^2}{x+y+z+1+2+3}\)

\(=\frac{36}{x+y+z+6}\)

\(=\frac{36}{12}=3\)

Đẳng thức xảy ra tại ......

Trên kia là sai lầm thường gawpjjj ( theo mình nghĩ thế tại nhác tìm dấu bằng )

thứ 2 là wolfram alpha bảo không có minimize:

5 tháng 7 2019

Như này nha bạn 

Akakakakaka,am,am

 ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi

5 tháng 7 2019

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

                                                      \(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

                                                        \(\ge4+2+5=11\)

"=" tại x = y = 1/2

23 tháng 10 2016

đề sai à bn

23 tháng 10 2016

đề đúng đó bạn

15 tháng 3 2017

Đặt \(\hept{\begin{cases}2^x=a\\2^y=b\end{cases}}\) thì ta có: \(A=\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}\)

Ta cần chứng minh \(2\) là GTNN của A (khi x=1,02171...;y=1,02171... và x=y=1,04019...)

\(\Leftrightarrow\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\ge2\)

Và điều này tương đương với \(\frac{\left(ab-1\right)\left(a-b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\ge0\)

Cái này đúng nếu \(ab\ge1\)

31 tháng 5 2017

\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}\)

\(=\frac{4}{1}+\frac{1}{2.\frac{1}{4}}=6\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

31 tháng 5 2017

Ta có \(\hept{\begin{cases}\left(x+y\right)^2=1\\\left(x-y\right)^2\ge0\end{cases}}\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

\(xy\le\frac{\left(x^2+^2\right)}{2}\)nên \(K=\frac{1}{x^2+y^2}+\frac{2}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{\frac{1}{2}}=6\)

\(K_{min}=6\)dấu "=" khi \(x=y=\frac{1}{2}\)