cho tam giác ABC vuông tại A. I,G,H lần lượt là trung điểm của MO,NO,MN. H đối xứng với K qua G
a)CMR:MOKH là hình bình hành
b)CMR: 3MN2=2(OH2+MG2+IN2)
giúp mik với! 5h30' chiều 21/11 là mik cần rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : tam giác ABC vuông tại A có đg trung tuyến ứng vs cạnh huyền nên AM=BM=MC.
mà BM= AK( ABMK là hbh)
=>AM=MC=BM=AK
lại có : BM// AK( ABMK là hbh)
=>MC//AK
Mà MC= AK( cmt)
nên AMCK là hbh (1)
Lại có: AB//MK( ABMK là hbh), AB vg góc AC( tam giác ABC vg tại A) nên MK vg góc AC(2)
Từ 1 và 2 suy ra đpcm
chúc b học tốt
\(a,\left\{{}\begin{matrix}CM=MB\\NM=MD\end{matrix}\right.\Rightarrow BDCN\) là hbh
\(b,BDCN\) là hbh nên \(\left\{{}\begin{matrix}BD=CN=AN\\BD//CN.hay.BD//AN\end{matrix}\right.\Rightarrow ABDN\) là hbh
Mà \(\widehat{A}=90^0\) nên ABDN là hcn
Vậy \(AD=BN\)
\(c,\) Gọi G là giao BN và AE
Dễ dàng cm được \(\Delta NMG=\Delta DME\left(g.c.g\right);\Delta MEC=\Delta MGB\left(g.c.g\right)\)
\(\Rightarrow ED=NG;CE=GB\left(1\right)\)
\(\Delta ABC\) có AM,BN là trung tuyến; \(AM\cap BN=G\) nên G là trọng tâm
\(\Rightarrow2NG=GB\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow CE=2DE\)
a) Xét tứ giác BHCK có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: BHCK là hình bình hành(cmt)
nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)
Ta có: BK//CH(cmt)
nên BK//CF
Ta có: BK//CF(cmt)
CF⊥AB(gt)
Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)
Ta có: CK//BH(cmt)
nên CK//BE
Ta có: CK//BE(cmt)
BE⊥AC(gt)
Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)
c) Vì H và I đối xứng nhau qua BC
nên BC là đường trung trực của HI
⇔C nằm trên đường trung trực của HI
hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: BHCK là hình bình hành(cmt)
nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)
Từ (1) và (2) suy ra CI=BK
Gọi O là giao điểm của BC và HI
mà BC là đường trung trực của HI
nên O là trung điểm của HI
Xét ΔHIK có
O là trung điểm của HI(cmt)
M là trung điểm của HK(H và K đối xứng nhau qua M)
Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)
⇒OM//IK(Định lí 2 về đường trung bình của tam giác)
hay IK//BC
Xét tứ giác BIKC có IK//BC(cmt)
nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)
Hình thang BIKC(IK//BC) có IC=BK(cmt)
nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a) Xét tứ giác BHCK có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: BHCK là hình bình hành(cmt)
nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)
Ta có: BK//CH(cmt)
nên BK//CF
Ta có: BK//CF(cmt)
CF⊥AB(gt)
Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)
Ta có: CK//BH(cmt)
nên CK//BE
Ta có: CK//BE(cmt)
BE⊥AC(gt)
Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)
c) Vì H và I đối xứng nhau qua BC
nên BC là đường trung trực của HI
⇔C nằm trên đường trung trực của HI
hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: BHCK là hình bình hành(cmt)
nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)
Từ (1) và (2) suy ra CI=BK
Gọi O là giao điểm của BC và HI
mà BC là đường trung trực của HI
nên O là trung điểm của HI
Xét ΔHIK có
O là trung điểm của HI(cmt)
M là trung điểm của HK(H và K đối xứng nhau qua M)
Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)
⇒OM//IK(Định lí 2 về đường trung bình của tam giác)
hay IK//BC
Xét tứ giác BIKC có IK//BC(cmt)
nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)
Hình thang BIKC(IK//BC) có IC=BK(cmt)
nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a: Xét tứ giác BHCK có
I là trung điểm chung của BC và HK
=>BHCK là hình bình hành
b: BHCK là hbh
=>BH//CK và BK//CH
=>BK vuông góc AB và CK vuông góc CA
góc ABK=góc ACK=90 độ
=>ABKC nội tiếp đường tròn đường kính AK
=>O là trung điểm của AK
c: Xét ΔKAH có
KO/KA=KI/KH=1/2
nên OI//AH
d: gọi giao của AH với BC là F
=>AH vuông góc BC tại F
Xét ΔBEC vuông tại E và ΔBFA vuông tại F có
góc B chung
=>ΔBEC đồng dạng với ΔBFA
=>BE/BF=BC/BA
=>BE*BA=BF*BC
Xét ΔCDB vuông tại D và ΔCFA vuông tại F có
góc C chung
=>ΔCDB đồng dạng với ΔCFA
=>CD/CF=CB/CA
=>CD*CA=CF*CB
=>BE*BA+CD*CA=BC^2
bạn xem lại đề thử ik sai sai sao á
a/ H là trung điểm của Mn
G là trung điểm của ON
Suy ra HG là đường trung bình của tam giác MON
Suy ra HG song song với Mo Từ đó suy ra HK song song Mo (1)
TA có Hg=1/2MO (T/c đường TB)Suy ra HG = MO Suy ra HK=MO(2)
Từ 1 và 2 suy ra MOHK là hình bình hành
Câu b mk chưa nhĩ ra