Tìm GTNN của biểu thức A = giá trị tuyệt đối của \(11^m-5^n\)với m,n \(\in\)N sao
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CB
1
25 tháng 1 2018
Ta thấy 11m tận cùng bằng 1, còn 5n tận cùng bằng 5.
Nếu 11m>5n thì A tận cùng bằng 6, nếu 11m<5n thì A tận cùng bằng 4.
Ta chỉ ra trường hợp A = 4 : với m = 2, n = 3 thì A = |121-125| = 4
Như vậy min A = 4 khi chẳng hạn m = 2, n = 3
PH
0
TN
2
25 tháng 4 2021
A=|x+2|-|x-3|≤ | x+2-(x-3)|
Vì | x+2-(x-3)|
=> | x+2-x+3| = | (x-x)+(2+3)|=| 5|=5
vậy GTNN của A = 5
26 tháng 4 2021
A = | x + 2 | + | x - 3 |
= | x + 2 | + | 3 - x | ≥ | x + 2 + 3 - x | = 5 ∀ x
Dấu "=" xảy ra <=> ( x + 2 )( 3 - x ) ≥ 0 <=> -2 ≤ x ≤ 3
Vậy MinA = 5 <=> -2 ≤ x ≤ 3
14 tháng 9 2018
A=|x-102|+|2-x|\(\ge\)|x-102+2-x|=|-100|=100
vậy minA=100 <=>|x-102|=0 hoặc |2-x|=0
<=>x-102=0 hoặc 2-x=0
<=> x=102 hoặc x=2
Ta thấy \(11^m\) tận cùng bằng 1, còn \(5^n\) tận cùng bằng 5. Nếu \(11^m>5^n\) thì A tận cùng bằng 6, nếu \(11^m< 5^n\) thì A tận cùng bằng 4.
Ta chỉ ra trường hợp A = 4 : với m = 2, n = 3 thì A = |121-125| = 4
Như vậy min A = 4 khi chẳng hạn m = 2, n = 3