K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo


6 tháng 2 2017 lúc 14:19

Cho tam giác ABC cân tại A , góc A=20 độ , vẽ tam giác đều DBC , D nằm trong tam giác ABC . Tia phân giác của góc ABD cắt AC tại H . Chứng minh :

a) Tia AD là tia phân giác của góc BAC

b) AM = BC

Hình thì chắc bạn vẽ được nên tớ không vẽ nữa!!!leuleuleuleuleuleu

a, Đi chứng minh tam giác ABD=tam giác ACD (c.c.c) =>góc BAD=góc CAD=>AD là tia phân giác của góc BAC(đpcm)

nếu có j thắc mắc hỏi mình nha!!!leuleuleuleu

b, tớ sửa đề chứng minh AH=BC do không có điểm M.

Chứng minh

Xét tam giác ABC cân tại A ta có:

góc ABC=góc ACB=(180độ -20 độ):2=160 độ:2=80độ (theo tính chất của tam giác cân)

ta lại có: góc DBC=60 độ( theo tính chất của tam giác đều)

mà góc ABD=góc ABC-góc DBC=80độ -60 độ=20độ

mặt khác góc BAD=gócCAD=20độ/2=10độ và góc ABD=20độ/2=10độ (theo tính chất của tia phân giác)

Xét tam giác ABH và tam giác BAD ta có:

góc BAH=góc ABD (=20độ); AB: cạnh chung; góc ABH=góc BAD(=10độ)

Do đó tam giác ABH = tam giác BAD

=> AH=BD mà BD=BC( theo tính chất của tam giác đều) nên AH=BC (đpcm)

Có chỗ nào vướng mắc hỏi mình nha!! Chúc bạn học giỏi!!leuleuleuleu

7 tháng 2 2018

Ủa có M mà

8 tháng 2 2022

oh my lord câu của bn từ 2016 r kìa

8 tháng 2 2018

a) Trên BC lấy điểm A' và A'' sao cho BA' = BA;  BA'' = BD

Do BD là phân giác góc ABA' nên ta có ngay \(\Delta ABD=\Delta A'BD\left(c-g-c\right)\) 

\(\Rightarrow AD=A'D\) ; \(\widehat{BA'D}=\widehat{BAD}=180^o-40^o.2=100^o\)

\(\Rightarrow\widehat{DA'A''}=80^o\)

Xét tam giác cân BDA'' có: \(\widehat{DBA''}=20^o\Rightarrow\widehat{BA''D}=\frac{180^o-20^o}{2}=80^o\)

Suy ra DA' = DA'' và \(\widehat{A''DC}=\widehat{DA''A'}-\widehat{ACB}=40^o\)

Nên DA'' = CA''

Tóm lại thì AD = DA' = DA'' = A''C nên BC = BA''+ A''C = BD + AD

b)  Vẽ tam giác đều AMF. 

Ta có ngay \(\widehat{MAF}=60^o\Rightarrow\widehat{CAF}=100^o-60^o=40^o\)

Suy ra \(\Delta ABC=\Delta CAF\left(c-g-c\right)\)

\(\Rightarrow AC=CF\)

Từ đó ta có \(\Delta AMC=\Delta FMC\left(c-c-c\right)\)

\(\Rightarrow\widehat{AMC}=\widehat{FMC}\) hay MA là phân giác óc AMF.

Vậy nên \(\widehat{MAC}=30^o\)

23 tháng 7 2017

Làm ơn giúp mk với ạ cảm ơn các bạn nhiều

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0