K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

T
Tai
VIP
27 tháng 7 2023

 

 Ta có: A = 5 + 52 + 5+....+ 5100

      ⇒�=(5+52)+(53+54)+...+(599+5100)

       ⇒�=5(1+5)+53.(1+5)+...+599.(1+5)

       ⇒�=5.6+53.6+...+599.6

              �=6.(5+53+...+599) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

23 tháng 10

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

23 tháng 10

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 5198)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

20 tháng 10 2021

Câu 2: 

\(1234321=1111^2\)

Do đó: Số này là hợp số

22 tháng 7 2015

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

17 tháng 12 2016

còn câu b

16 tháng 12 2018

Mỗi phần tử của A đều chia hết cho 3

nên A chia hết cho 3 và lớn hơn 3 nên là hợp số

b, Các phần tử của A đều chia hết cho 9 ngoại trừ 3

=> A KHÔNG CHIA HẾT CHO 9. Vì A ko chia hết cho 9 mà chia hết cho 3

nên không là số chính phương

16 tháng 5 2017

a.

A = 5 + 5^2 + 5^3 +...+5^100

5A = 5^2 + 5^3 +...+5^101

4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]

A = \(\frac{5^{101}-5}{4}\)

b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5

=> A là hợp số

c, 

A = 5 + 5^2 + 5^3 +... + 5^100

A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]

A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]

A = 30 + 5^2.30 + ... + 5^98 . 30 

=> A chia hết cho 30

d.

Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]

Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]

=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]

Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng

Mà A chỉ có 4 chữ số 0

=> A không phải số chính phương

Ủng hộ mik nếu thấy OK   Nha mấy bạn >..<

31 tháng 12 2021

[cm trên] là j vậy?