Choa tam giác ABC có phân giác trong AD. Ở miền trong góc BAD và góc CAD vẽ hai tia AM,AN sao cho góc MAD= góc NAD (M thuộc D, N thuộc CD) Gọi E và F lần lượt là hình chiếu của M trên AB và AC. P và Q là hình chiếu của N trên AB và AC.
a,Chứng minh E,F,P,Q cùng thuộc một đường tròn
b, Chứng minh
\(\frac{AB^2}{AC^2}\)= \(\frac{BM.BN}{CM.CN}\)
a. Ta có AD là phân giác góc BAC; AD cũng là phân giác góc MAN nên \(\widehat{BAM}=\widehat{CAN.}\)
Vậy thì \(\widehat{PAN}=\widehat{FAM}\) (Vì cùng bằng \(\widehat{BAC}-\widehat{NAC}=\widehat{BAC}-\widehat{MAB}\) )
Từ đó suy ra \(\Delta PAN\sim\Delta FAM\left(g-g\right)\Rightarrow\widehat{PNA}=\widehat{FMA}\left(1\right)\)
Ta thấy \(\widehat{APN}=\widehat{AQN}=90^o\Rightarrow\)P, A,Q, N cùng thuộc một đường tròn. Vậy \(\widehat{PNA}=\widehat{PQA}\left(2\right)\)
Tương tự \(\widehat{FMA}=\widehat{FEA}\left(3\right)\)
Từ (1); (2); (3) suy ra \(\widehat{PQF}=\widehat{PEF}\) hay tứ giác PEQF là tứ giác nội tiếp. Vậy P, E, Q, F cùng thuộc một đường tròn.
b. Gọi I, J là hình chiếu của D trên AB và AC. Khi đó ta thấy ngay DI = DJ.
Ta có: \(\frac{NC}{DC}=\frac{NQ}{DJ};\frac{BM}{BD}=\frac{EM}{DI}\Rightarrow\frac{NC}{CD}.\frac{BD}{BM}=\frac{NQ}{EM}\Rightarrow\frac{CN}{BM}.\frac{BD}{CD}=\frac{NQ}{EM}\)
\(\Rightarrow\frac{CN}{BM}.\frac{AB}{AC}=\frac{NQ}{EM}\)
\(\frac{BD}{BN}=\frac{DI}{NP};\frac{CD}{CM}=\frac{DJ}{MF}\Rightarrow\frac{CM}{BN}.\frac{AB}{AC}=\frac{MF}{NP}\)
\(\Rightarrow\frac{AB^2.CM.CN}{AC^2.BM.BN}=\frac{NQ}{EM}.\frac{MF}{NP}\)
Lại có \(\Delta PNQ\sim\Delta FME\left(g-g\right)\Rightarrow\frac{NQ}{ME}=\frac{PN}{MF}\Rightarrow\frac{NQ}{ME}.\frac{MF}{PN}=1\)
\(\Rightarrow\frac{AB^2.CM.CN}{AC^2.BM.BN}=1\Rightarrow\frac{AB^2}{AC^2}=\frac{BM.BN}{CM.CN}.\)