cho ba số a,b,c thoa man abc=1 va a3>36 .Chứng mình rằng phương trình sau co hai nghiem phan biet
(\(x^2-\frac{2ab}{3}x+\frac{ab^3}{3}\))(\(x^2-2bcx+bc^3\))(9\(x^2-2acx+a^3c\))=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}\)
\(\text{Suy ra: }\frac{a+b}{c+a}=\frac{a}{c}\Rightarrow c.\left(a+b\right)=a.\left(c+a\right)\Rightarrow ac+bc=ac+a^2\)
=>a2=bc
b)Viết đề rõ lại giúp
1. phân tích thành nhân tử
x thuộc ={ -0,4;0,5} => tích = (-0,4)*0,5=-0,2
2. phần nguyên = 8
có 2x=-3y => 2(x+y)=2x+2y= -3y+2y=-y=(-0,57)*2=-1,14 =>y=1,14
=>x=-0,57-1,14=-1,71
=>xy=(-1,71)*(1,14)=-1,9494
toán vio phải ko bạn?
2, (trích đề thi học sinh giỏi Bến Tre-1993)
\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0
=> đpcm
*bài này tui làm tắt, không hiểu ib
Vừa lm xog bị troll chứ, tuk quá
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)
Khử mẫu :
\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)
Tự xử nốt, lm bài này muốn phát điên mất.
ĐK \(a+b\ne0\)
Ta có \(\Delta=\left[\left(a-b\right)\left(a^2-b^2\right)\right]^2-4.\left(a+b\right)^2.\left(-2ab\right)\left(a^2+b^2\right)\)
\(=\left[\left(a-b\right)^2\left(a+b\right)\right]^2+8ab\left(a+b\right)^2\left(a^2+b^2\right)\)
\(=\left(a+b\right)^2\left[\left(\left(a-b\right)^2\right)^2+8ab\left(a^2+b^2\right)\right]\)
\(=\left(a+b\right)^2\left[\left(a^2-2ab+b^2\right)^2+8ab\left(a^2+b^2\right)\right]\)
\(=\left(a+b\right)^2\left[a^4+4a^2b^2+b^4-4a^3b-4ab^3+2a^2b^2+8a^3b+8ab^3\right]\)
\(=\left(a+b\right)^2\left[a^4+4a^2b^2+b^4+4a^3b+4ab^3+2a^2b^2\right]\)
\(=\left(a+b\right)^2.\left[\left(a^2+2ab+b^2\right)^2\right]=\left(a+b\right)^2\left(a+b\right)^4=\left(a+b\right)^6\)
Ta thấy \(\Delta=\left(a+b\right)^6>0\)với mọi \(a+b\ne0\)
Vậy phương trình luôn có 2 nghiệm phân biệt