a, Cho \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) tim gia tri cua moi ti so do.
b, Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\).CMR: a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{a-b+c}{4}\Rightarrow a-b+c=2a\)
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a+2b-c}{2+2.5-7}=\frac{a+2b-c}{5}\Rightarrow a+2b-c=\frac{5}{2}a\)
\(\Rightarrow A=\frac{2a}{\frac{5}{2}a}=\frac{4}{5}\)
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
Hì
Không spam như đừng cmt spam AD :
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Vậy ta thấy a = b = c ; để biểu thức trên đúng .
Nếu như a = b = c thì a x 2 = b + c
Vậy tỉ số là 1/2
Ta có 2 trường hợp :
a = b : 2 = c : 4
Nếu vậy thì không thể ( c / a không phù hợp )
Vậy trường hợp phân số bằng nhau chỉ còn 1 . Các chữ số giống nhau
Vậy a = b = c
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\Rightarrow a=b=c\)