tinh
1/1.3+1/3.5+........+1/97.98
giai ho em ti dang ban
aii giai dc cho 2 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)
= \(1-\frac{1}{\left(2n+3\right)}\)
cách làm này ko biết sai hay đúng nên hãy cẩn thận
=2
bạn hỏi vậy có thể olm sẽ khóa nick bạn vĩnh viễn đấy!
lời cảnh báo
Bài này nếu dùng hằng đẳng thức lớp 8 thì hay hơn.Thôi cứ làm vầy nhé:
1+1/1.3=2^2/1.3 ; 1+1/2.4=3^2/2.4 ; 1+1/3.5=4^2/3.5 ; ......;1+1/2007.2009=2008^2/2007.2009 Thấy quy luật rồi chứ!
ta được A=(2^2.3^2.4^2.....2008^2)/1.3.2.4.3.5.4.6.5.7...2007.2009 Chú ý quan sát và sắp xếp
để giản ước hết.
=(2^2.3^2.4^2....2008^2)/(1.2.3.4.5.6....2007.3.4.5.6....2007.2008.2009) Chuẩn đó
=(2^2.3^2.4^2....2008^2)/(2.3^2.4^2.5^2....2007^2.2008.2009) Viết ra nháp thì dễ nhìn hơn
=2^2.2008^2/2.2008.2009=2.2008/2009 Tựbấm máy và nhớ TICK đó.
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2015.2016}=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2016}\right)=\dfrac{1}{2}-\dfrac{1}{2016.2}< \dfrac{1}{2}\left(đpcm\right)\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2015.2017}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2017}\right)\\ < \dfrac{1}{2}.1=\dfrac{1}{2}\)
Tính S = 1.3/3.5 + 2.4/5.7 + 3.5/7.9 + ... + ( n-1)( n+1) / (2n-1)(2n+1) + ... + 1002.1004/2005.2007
\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)
\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)
\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)
\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)
\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)
\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)
\(\Rightarrow S=125,4372197\)
\(\)
A = 1.3+2.4+3.5 + ... + 99.101
<=> A= (2-1).(2+1)+(3-1).(3-1)+(4-1).(4+1)+...+(100-1).(100+1)
<=> A= 22 -1+32-1+42-1+....+1002-1
<=> A=(22+32+42+...+1002)-(1+1+1+1+...+1)
<=>A=(22+32+42+....+1002)-99
Và kết quả cuối cùng đó chính là 338250
Bài này vẫn còn 1 cách nữa nhưng cách đó dài quá nên mình làm hơi vắn tắt xíu
Sau một ngày đêm ốc sên leo lên được số mét là
9/10 + 2/5 = 13 / 10 ( mét )
Đ/s : 13/10 mét
Sau một ngày đêm ốc sên leo lên được số mét là
9/10 + 2/5 = 13 / 10 ( mét )
Đ/s : 13/10 mét
duyệt đi olm