K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2015

B A C D

Lấy D thuộc tia đối của tia AC sao cho DA = AC

=> BA là trung tuyến của tam giác BDC đồng thời là đường cao

=> tam giác BDC cân tại B

Hơn  nữa, tam giác ABC vuông tại A  , góc B = 30o

=> gócC = 60o mà  tam giác BDC cân tại B 

=> tam giác BDC đều

=> DC =BC =a

=> AC= DC/2 = a/2

a) Xét ΔAMB và ΔEMB có

BA=BE(gt)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))

BM chung

Do đó: ΔAMB=ΔEMB(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MEB}=90^0\)

hay ME\(\perp\)BC(đpcm)

b) Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

hay \(\widehat{ABE}=60^0\)

Xét ΔABE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)

nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)

7 tháng 8 2017

 

Đáp án B

Ta có 

Đồng thời

 

Nên

 

Tam giác B'A'C vuông tại A' có 

 

25 tháng 12 2021

a: \(BC=AC:\sin B=6:\sin60^0=4\sqrt{3}\left(cm\right)\)

14 tháng 11 2021

\(AC=\sin B\cdot BC=\dfrac{1}{2}\cdot18=9\left(cm\right)\)

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

7 tháng 7 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: ∠(A1 ) =(1/2 )∠(BAC) = (1/2).80o = 40o

(vì AD tia phân giác của góc BAC)

Trong ΔADC ta có ∠(ADH) là góc ngoài tại đỉnh D

Do đó: ∠(ADH) = ∠(A1) + ∠C (tính chất góc ngoài của tam giác)

Vậy ∠(ADH ) = 40o + 30o = 70o

9 tháng 8 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

ΔADH vuông tại H nên:

∠(HAD) + ∠(ADH) = 90o (tính chất tam giác vuông)

⇒∠ (HAD) = 90o-∠(ADH)o = 90o - 70o = 20o

3 tháng 2 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC có:

∠(BAC) + ∠B + ∠C = 180o (tổng ba góc trong tam giác)

Mà ∠(BAC) + 70o + 30o = 180

Vậy ∠(BAC) = 180o-70o - 30o = 80o

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)