K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2022

Do `\Delta ABC` đều 

`-> AB=AC=BC`

`-> AB = 2BH`

Xét `\Delta ABH` vuông tại `H` `( AH` là đường cao `)`

ta có `:` `AB^2 = BH^2 + AH^2`

`=> 4BH^2 = BH^2 + AH^2`

`=> 3BH^2 = AH^2`

`=> BH = ( AH )/( \sqrt{3} )`

`=> a = AB = ( AH )/( \sqrt{3} )`

Vậy `...` 

22 tháng 5 2022

`=> a = AB = ( AH )/( \sqrt{3} )`

dòng cuối 

30 tháng 12 2017

Bán kính đáy:

Diện tích xung quanh của hình nón đó là:

Chọn: D

4 tháng 11 2019

12 tháng 3 2016

 AI =√18.75

12 tháng 3 2016

Vì AH là đường cao tam giác đều

nên BAH là tam giác nứa đều

nên AB=2BH=2,5

AD ĐL Pytago đc AH2=52-2,52=6,25

Vậy AH =2,5

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: G ko cách đều ba cạnh của ΔABC vì G ko phải là tâm đường tròn nội tiếp tam giác

4:

a: Gọi độ dài cạnh góc vuông cần tìm là x

Theo đề, ta có: x^2+x^2=a^2

=>2x^2=a^2

=>x^2=a^2/2=2a^2/4

=>\(x=\dfrac{a\sqrt{2}}{2}\)

b:

Độ dài cạnh là;

\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)

5: 

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>13^2=12^2+HB^2

=>HB=5cm

BC=5+16=21cm

ΔAHC vuông tại H

=>AH^2+HC^2=AC^2

=>AC^2=16^2+12^2=400

=>AC=20(cm)

ΔABC đều có AH là đường cao

nên \(AH=\dfrac{AB\cdot\sqrt{3}}{2}=\dfrac{2a\cdot\sqrt{3}}{2}=a\sqrt{3}\)

=>\(\left|\overrightarrow{AH}\right|=AH=a\sqrt{3}\)

17 tháng 9 2023

Xét tam giác ABC đều có đường cao AH ta có: 

\(\Rightarrow BH=HC=\dfrac{BC}{2}=\dfrac{2a}{2}=a\) 

Mà: \(AH=\sqrt{AB^2-BH^2}=\sqrt{\left(2a\right)^2-a^2}\)

\(\Rightarrow AH=\sqrt{4a^2-a^2}=a\sqrt{3}\)

\(\Rightarrow\left|\overrightarrow{AH}\right|=AH=a\sqrt{3}\)

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

13 tháng 2 2022

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

23 tháng 1 2022

a, Theo định lí Pytago tam giác ABH vuông tại H

\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm 

-> BC = HB + HC = 4 cm 

b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến 

=> AH = AC/2 = 5/2 

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)