Cho tam giác đều ABC có cạnh bằng a và đường cao AH. tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bán kính đáy:
Diện tích xung quanh của hình nón đó là:
Chọn: D
Vì AH là đường cao tam giác đều
nên BAH là tam giác nứa đều
nên AB=2BH=2,5
AD ĐL Pytago đc AH2=52-2,52=6,25
Vậy AH =2,5
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: G ko cách đều ba cạnh của ΔABC vì G ko phải là tâm đường tròn nội tiếp tam giác
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)
ΔABC đều có AH là đường cao
nên \(AH=\dfrac{AB\cdot\sqrt{3}}{2}=\dfrac{2a\cdot\sqrt{3}}{2}=a\sqrt{3}\)
=>\(\left|\overrightarrow{AH}\right|=AH=a\sqrt{3}\)
Xét tam giác ABC đều có đường cao AH ta có:
\(\Rightarrow BH=HC=\dfrac{BC}{2}=\dfrac{2a}{2}=a\)
Mà: \(AH=\sqrt{AB^2-BH^2}=\sqrt{\left(2a\right)^2-a^2}\)
\(\Rightarrow AH=\sqrt{4a^2-a^2}=a\sqrt{3}\)
\(\Rightarrow\left|\overrightarrow{AH}\right|=AH=a\sqrt{3}\)
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm
-> BC = HB + HC = 4 cm
b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến
=> AH = AC/2 = 5/2
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)
Do `\Delta ABC` đều
`-> AB=AC=BC`
`-> AB = 2BH`
Xét `\Delta ABH` vuông tại `H` `( AH` là đường cao `)`
ta có `:` `AB^2 = BH^2 + AH^2`
`=> 4BH^2 = BH^2 + AH^2`
`=> 3BH^2 = AH^2`
`=> BH = ( AH )/( \sqrt{3} )`
`=> a = AB = ( AH )/( \sqrt{3} )`
Vậy `...`
`=> a = AB = ( AH )/( \sqrt{3} )`
dòng cuối