Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AH là đường cao tam giác đều
nên BAH là tam giác nứa đều
nên AB=2BH=2,5
AD ĐL Pytago đc AH2=52-2,52=6,25
Vậy AH =2,5
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: G ko cách đều ba cạnh của ΔABC vì G ko phải là tâm đường tròn nội tiếp tam giác
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm
-> BC = HB + HC = 4 cm
b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến
=> AH = AC/2 = 5/2
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)
a) Xét tam giác ABH vuông tại H. Áp dụng định lý Pi-ta-go trong tam giác vuông ta có:
BH2+AH2=AB2
<=> 1+4=5(cm)
<=> AB=\(\sqrt{5}\)cm
Xét tam giác AHC vuông tại H. Áp dụng định lí Pi-ta-go ta có:
HC2+AH2=AC2
<=> 9+4=13(cm)
<=> AC=\(\sqrt{13}\left(cm\right)\)
Xét BC=BH+HC=1+3=4(cm)
b) Áp dụng công thức tính đường cao trong tam giác đều, ta có:
BH=\(5\cdot\frac{\sqrt{3}}{2}=\frac{5\sqrt{3}}{2}\)
Do `\Delta ABC` đều
`-> AB=AC=BC`
`-> AB = 2BH`
Xét `\Delta ABH` vuông tại `H` `( AH` là đường cao `)`
ta có `:` `AB^2 = BH^2 + AH^2`
`=> 4BH^2 = BH^2 + AH^2`
`=> 3BH^2 = AH^2`
`=> BH = ( AH )/( \sqrt{3} )`
`=> a = AB = ( AH )/( \sqrt{3} )`
Vậy `...`
`=> a = AB = ( AH )/( \sqrt{3} )`
dòng cuối